Good Practices Manual

Green House Gases Emission Reduction

Chlor-alkali Sector

Prepared by National Productivity Council Supported by Department of Industry and Policy Promotion

Prepared by National Productivity Council, India

Supported by Department of Industrial Policy and Promotion Ministry of Commerce and Industry Government of India

Copyright 2017 National Productivity Council

This manual is the property of Department of Industrial Policy and Promotion, Ministry of Commerce and Industry, Government of India. No part of this publication may be reproduced, distributed, stored in retrieval system, or transmitted in any form or by any means, including photocopying or other electronic or mechanical methods, without the prior written permission of the Publisher.

TABLE OF CONTENTS

AC	KNOWLEDGEMENT	1
PRE	FACE	2
STU	DY TEAM	3
1.	INTRODUCTION	
1.1	BACKGROUND	4
1.2	ABOUT THE PROJECT	5
1.3	METHODOLOGY	5
1.4	GREENHOUSE GASES AND ITS IMPACT	6
1.5	OUTLINE OF ENERGY SCENARIO IN INDIA	9
1.6	GHG EMISSION FACTORS	
2.	CHLOR ALKALI SECTOR PROFILE	14
2.1	INTRODUCTION	14
2.2	CAPACITY UTILIZATION	14
2.3	USES OF CAUSTIC AND CHLORINE	16
2.4	EXPORTS AND IMPORTS	17
2.5	PERFORMANCE AND PRODUCTIVITY INDICATORS	17
2.6	BENCHMARKS FOR CHLOR-ALKALI INDUSTRY	20
3.	CHLOR-ALKALI MANUFACTURING PROCESS	22
3.1	OVERVIEW OF CHLOR-ALKALI PRODUCTION	
3.2	BRINE PREPARATION	23
3.3	CELL HOUSE	24
3.4	CAUSTIC CONCENTRATION	
3.5		
3.6		V11
3.7	UTILITIES	V11
4.	BEST PRACTICES	ХХ
4.1	CELL HOUSE	XX
4.2	CHLORINE LIQUEFACTION AND TAIL GAS TREATMENT	XXV
4.3	HYDROGEN GAS MANAGEMENT	xxvi
4.4		xxvii
4.5		xxix
4.0 17		XXX
4.7 1 R	ENERGY EFFICIENCY IN LIGHTING SYSTEM	XXXII vvvii
-T.U		ллл11

5.	CASE STUDIESxxxiii
5.1	RE-COATING OF ANODE AND CATHODE WITH MEMBRANE CHANGE xxxiii
5.2	fully automatic control of brine feed temperature xxxiii
5.3	PREHEATING OF FEED BRINE USING CHLORINE IN RECUPERATOR
5.4	CONVERSION OF CAUSTIC CONCENTRATION PLANT FROM DOUBLE
	EFFECT TO TRIPLE EFFECTxxxv
5.5	REPLACING RECIPROCATING COMPRESSOR WITH FREON SCREW
	COMPRESSOR FOR CHLORINE LIQUEFACTIONxxxv
5.6	CONVERSION OF HOT WATER FIRED SINGLE EFEECT VAM MACHINE
	WITH DOUBLE EFFECT VAM MACHINExxxvi
5.7	IMPROVEMENT OF POWER FACTOR BY ADDING CAPACITOR
5.8	REPLACEMENT OF OLD LOW EFFICIENCY TRANSFORMER WITH NEW
	ENERGY EFFICICENT TRANSFORMER
5.9	REPLACEMENT OF CONVENTIONAL MAGNETIC CHOKES WITH
	ELECTRONIC CHOKES xxxviii
6.	INTERNET OF THINGS (IOT)
6.3	Apps for Productivity Assessment and Improvement
AB	
BIB	LIOGRAPHY xlv

ACKNOWLEDGEMENT

Alkali Manufacturers Association of India (AMAI), New Delhi	Mr. Ramkumar Shankar Ex-President Mr. K Srinivasan, Secretary General
Thyssenkrupp Industrial Solutions (India) Ltd., Mumbai	Dr. Ranga Rao, GM- Chlor Alkali Division
	Mr. Kalyana Sundaram, Asst. Vice President
Tamil Nadu Petro Products Ltd (TPL), Chennai	Mr. Muthu Kumarasamy, Head Operations
	Mr. N. Surya Kumar, Sr. Engineer
Travancore Chemicals Cochin, Cochin	Mr. Jayapalan, AGM
	Mr. Ajith, Manager
	Mr. R Jeyakumar, Executive Vice President
DCW-Sahupuram	Mr. Subhash Tandon, Executive Vice President
Andhra Sugars, Kovvur	Mr. G Venkat Rao, Chief Elect. Engineer
Sree Rayalaseema Alkalies and Allied Chemicals Ltd., Kurnool	Mr. Elluri Ramaiah, Vice President (Mech.),

PREFACE

It is now widely accepted that we have to limit the temperature rise to 2°C to mitigate effects of climate change. This requires changing the portfolio of energy basket from fossils to non-renewables, reduce energy use through energy efficiency and conservation and reduce GHG emissions.

The broad intent and its goals can only be achieved by coordinated actions at various level by society, business, industry and government. As part of its endeavour the Government of India is formulating policies, action plans to support and guide industry and entrusted National Productivity Council to prepare of Best Practices Manual for Reducing GHG Emissions in various sectors namely, **Thermal Power Plant, Chlor Alkali, Cement, Pulp and Paper and Iron and Steel**.

This manual is expected to serve as reference manual for

- Identifying sources of GHG emissions
- Assess and quantify emissions.
- Evaluate and assess potential to improve energy efficiency and reduce GHG emissions.
- Propose a menu of options which industry can consider for assessment and implementation.

The scope of this manual covers GHG emissions in the plant boundary and does not include transportation of raw materials, products and wastes to secured landfills, emissions from domestic waste treatment and emissions from sales and other offices.

It is hoped the manual will be handy reference and guide for all levels of engineers and managers working in the sector.

STUDY TEAM

Project Coordinator	Mr. R Virendra, Dy. Director General, National Productivity Council
Team Coordinator	Mr. D Sreenivasulu, Dy. Director National Productivity Council
Team Members	Mr. R Idhayachander, Dy. Director National Productivity Council Mrs. Preethi Dineshkumar, Asst. Director National Productivity Council Mrs. V G Sandhya, Asst. Director National Productivity Council
Advisors	Mr. N.K. Kuttiappan, President LVK Enviro Consultants, Chennai Mr. J. Nagesh Kumar, Director Centre for Energy Environment and Productivity, Chennai Mr. K Pattabi, Ex General Manager Tamil Nadu Petro Products Ltd, Chennai

1. INTRODUCTION

1.1 BACKGROUND

Energy is a major driver of economy and the per capita consumption of energy is a lead indicator of its development. The fossil fuels, constituting 72.4% of the energy basket as of 2013¹, is the major contributor of GHG emissions and consequently global warming. The wider consensus that the temperature rise is to be limited to 2°C requires reducing GHG emissions by changing the portfolio of energy mix from fossil fuels to non-renewable sources, and reducing energy use through energy efficiency and conservation.

India is a net energy importing country and its GDP growth is one of the highest in the world. To maintain its growth rate as well as to ensure energy security and meet its committed GHG emission target reduction (30-35%) by 2030 from 2005 levels, India has been taking measures to shift its energy consumption towards renewable energy, besides adopting energy conservation and management measures. Studies indicate potential to reduce GHG emissions as shown in Figure 1.1.

Figure 0.1 Indian GHG Emission Scenario (Past, Current & Projected) Source: Pathways to lowcarbon_economy_Version2

¹http://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS

As can be seen, industrial sector's GHG reduction potential is about 680 million tonnes CO_2e per year. In line with these projections provided by various studies, Government of India has evolved policies, action plans and mission oriented programs to address the following objectives and issues.

- Energy security to meet present and future needs
- Environmental impact-to address local emissions & global climate change
- Economic development to create a sustainable development
- Ease of implementation

1.2 ABOUT THE PROJECT

To ensure effective translation of policy and implementation of action plans, Department of Industrial Policy & Promotion (DIPP), under Ministry of Commerce & Industry, Government of India has entrusted National Productivity Council of India (NPC) with the project titled "Preparation of Good Practices Manuals for Green House Gas Emission Reduction in Five Energy Intensive Industry Sectors in India" under the 12th Plan period (2012-2017).

The scope of the project is to conduct field and questionnaire survey in five selected energy intensive sectors (Thermal Power Plant, Chlor Alkali, Cement, Pulp and Paper and Iron and Steel) of Indian economy, and bringing out manuals on Good Practices for GHG Emission reduction in the selected energy intensive sectors. Out of these five energy intensive sectors, this manual highlights the best practices involved for reducing Green House Gases Emission Reduction in the chlor-alkali sector.

This manual brings out sources and trends driving India's greenhouse gas emissions in the chlor-alkali sector, outlining present situation and technologies that offer potential for significant emission reductions through enhanced energy efficiency that will put India on a sustained low-carbon path without sacrificing economic growth. It also highlights the Government of India policies and interventions that spur energy efficiency and GHG reduction activities in the sector eventually leading to improving energy security.

1.3 METHODOLOGY

For preparing this manual, the following methodology was adopted:

• Sector reports were prepared with inputs from questionnaire survey, detailed field visits and audits, workshops and guidance from steering committee.

- The synopses of the reports were extracted to prepare this manual for comprehensive presentation of information and provide guidelines for implementation of GHG emission reduction options.
- Feedback on the manual contents and the material was sought and received from industries, Alkali Manufacture's Association, and other stakeholders and the same was incorporated in the final manual

1.4 GREENHOUSE GASES AND ITS IMPACT

Over the last 100 years, it has been found out that the earth is getting warmer and warmer, unlike previous 8000 years when temperatures have been relatively constant. The present temperature is 0.3-0.6 °C warmer than it was 100 years ago. The key greenhouse gas (GHG) causing global warming through human enhanced GHG effect is carbon dioxide.

The natural greenhouse effect is the process by which radiation from the earth's atmosphere warms its surface to a temperature above what it would be without its greenhouse gases naturally present in the atmosphere. The greenhouse gases naturally present in the atmosphere include carbon dioxide, water vapor, methane, nitrous oxide, and ozone.

Certain human activities add to the levels of most of the naturally occurring gases. For example, carbon dioxide is released to the atmosphere when fossil fuels such as oil, natural gas, coal, wood etc are burned. The enhanced greenhouse gas effect is the further rise in average earth's temperature due to increase in the amount of carbon dioxide and other greenhouse gases in the earth's atmosphere due to human activities. Both these effects are depicted in Figure 1.2.

Figure 1.2 Natural and Human Enhanced Greenhouse Effect

Green House Gases (GHG) is of two types namely direct and indirect. Direct GHG contribute directly to the greenhouse effect in the atmosphere by trapping the infrared radiation near the

earth's surface. The major GHG gases identified by Intergovernmental Panel on Climatic Change (IPCC) are carbon dioxide, methane, nitrous oxide, hydrogen fluorocarbons, per fluorocarbons, sulphur hexafluoride.

Indirect GHG control the oxidising capacity of the troposphere by reducing the hydroxyl radical distribution thereby increasing the residence time of direct greenhouse gases, such as methane and ozone. Although there are a number of ways of measuring the strength of different greenhouse gases in the atmosphere, the Global Warming Potential (GWP) is the most used indicator.

GWP depends upon the greenhouse gas ability to absorb heat in the atmosphere. HFCs and PFCs are the most heat-absorbent. Methane traps over 21 times more heat per molecule than carbon dioxide, and nitrous oxide absorbs 270 times more heat per molecule than carbon dioxide. The GWPs for different GHGs are presented in Table 1.1.

GHG	Name	Common Sources	Atmospheric	Global
			Lifetime	Warming
			(years)*	Potential
CO_2	Carbon Dioxide	Fossil fuel combustion, forest	50-200	1
		clearing, cement production etc.		
CH_4	Methane	Landfills, production and	12	21
		distribution of natural gas and		
		petroleum, fermentation from the		
		digestive system of livestock, rice		
		cultivation, fossil fuel		
		combustion, etc.		
N_2O	Nitrous Oxide	Fossil fuel combustion, fertilizers,	150	310
		nylon production, manure, etc.		
HFC's	Hydro	Refrigeration gases, aluminum	264	Up to
	fluorocarbons	smelting, semiconductor		11,700
		manufacturing, etc.		
PFC's	Per fluorocarbons	Aluminum production,	10,000	Up to 9200
		semiconductor industry, etc.		
H_2	Hydrogen	Chlor alkali production etc	100	5.8

Table 1.1 Direct and Indirect Green House Gases and its GWP

The Figure 1.3 shows comparison of per capita CO_2 emission for the top five GHG emitting countries of the world and EU. India—owing to higher population—per capita CO_2 emission is the least. However, in terms of absolute emissions India is the third largest CO_2 emitting

country, behind the US and China (2015) and contributing about 6 % (2.3 Gt CO_2) of global emissions (WEO 2015).

Figure 1.3 Per capita CO₂ Emissions

Impacts of Global Warming

Rise in Global Temperature

Observations show that global temperatures have risen by about 0.6 °C over the 20th century. There is strong evidence now that most of the observed warming over the last 50 years is caused by human activities. The various climate models predict that the global temperature will rise by about 6 °C by the year 2100.

Rise in Sea Level

In general, the faster the climatic change, the greater will be the risk of damage. The mean sea level is expected to rise 9–88 cm by the year 2100, causing flooding of low lying areas and other damages.

Food Shortages and Hunger

Water resources will be affected as precipitation and evaporation patterns change around the world. This will affect agricultural output. Food security is likely to be threatened and some regions are likely to experience severe food shortages and hunger.

Models also predict an average increase in temperature in India of $2.3-4.8^{\circ}$ C for the benchmark doubling of carbon dioxide scenario. It is estimated that 7 million people would be displaced, 5700 km² of land and 4200 km of road would be lost, and wheat yields could decrease significantly.

Due to rising energy demand, India's CO_2 emissions are expected to grow at the rate of 7% and surpass the present EU-28 emissions by 2020. As a part of mitigation effort, India is committed to increase its share of non-fossil energy sources from current 19% to 40% by 2030. However, combustion of fossil fuel will continue to be the single major contributor to the global warming in the coming years and hence the focus is on efforts to opt for renewable energy and enhance energy efficiency.

1.5 OUTLINE OF ENERGY SCENARIO IN INDIA

The energy mix of India for 2013 presented in the pie chart (Figure 1.4) indicates fossil fuel is the main stay of India's energy mix.

Figure 2.4 Primary Energy Demand in India for 775 MTOE (Source : IEA, 2015)

Industrial energy demand has almost doubled over the 2000-2013 period, with strong growth from coal and electricity. Large expansion in the energy-intensive sectors is anticipated in the future. The present energy consumption in these energy intensive sectors in the country is high compared to the developed world. The major energy consuming sectors in the country are Iron & Steel, Chemicals, Textiles, Aluminium, Fertilizers, Cement & Paper. These sectors account for about 60% of the total energy consumption in industry. The energy consumption in manufacturing is relatively high in India which is reflected in the Specific Energy Consumption (SEC). This, therefore, provides an opportunity to reduce energy consumption and thereby GHG emissions. The typical SECs in different manufacturing sectors is presented in Table 1.2.

Sl. No.	Industrial Sector	Specific Energy Consumption (SEC)		
1101		India	World	
1	Iron and Steel	6.5–7.0 GCal/Ton	4.5–5.5 GCal/Ton	
2	Cement	80 kWh/T	110 kWh/T	
3	Aluminium	4300 kWh/T (Refinery)	3850 kWh/T (Refinery)	
		16500 kWh/T (Smelter)	15250 kWh/T (Smelter)	
4	Fertilizer	7.7 GCal/T of Urea	6.5 GCal/T of Urea	
5	Paper and Pulp	8.4 Steam consumption/Ton	4.5 Steam consumption/Ton	
6	Textile	7.1 GCal/Ton	3.1 GCal/Ton	
7	Chlor Alkali	3.1 GCal/T (Soda ash)	2.6 GCal/T (Soda ash)	
		2.1 GCal/T (Caustic Soda)	1.8 GCal/T (Caustic Soda)	

 Table 1.2 Specific Energy consumption in Energy Intensive Industries

Energy Conservation and GHG Emission Reduction Initiatives by Government

The major policies that are currently promulgated and being implemented to meet the energy and climate challenge are summarized in Table 1.3.

Policy /Initiative Statement	Key Features of the Policy
Energy Policies	
1. National Electricity Policy	• Access to Electricity - Available for all households in next five years
2. National Rural Electrification Policy	• Availability of Power - Demand to be fully met by 2012. Energy and peaking shortages to be overcome and adequate spinning reserve to be available.
	• Supply of Reliable and Quality Power of specified standards in an efficient manner and at reasonable rates.
	• Per capita availability of electricity to be increased to over 1000 units.

Table 1.3: Government Policies and Initiatives for Energy Conservation

Policy /Initiative Statement	Key Features of the Policy		
3. National Tariff Policy	• Minimum lifeline consumption of 1 unit/household/day.		
2006	• Financial turnaround and commercial viability of electricity		
	Sector.		
	• Protection of consumers' interests.		
Industrial Energy Efficiency	Programs		
 National Mission for Enhanced Energy Efficiency (NMEEE) (a) Market Transformation for Energy Efficiency (MTEE) (b) Energy Efficiency Financing Platform (EEFP) (c) Perform, Achieve, and Trade (PAT) Mechanism for Energy Efficiency National Mission on Sustainable Habitat 	 Market-based approaches to unlock energy efficiency opportunities, estimated to be about Rs. 74,000 crores (2014-15) Annual fuel savings in excess of 23 million toe Cumulative avoided electricity capacity addition of 19,000 MW CO₂ emission mitigation of 98 million tons per year Works on Municipal Solid Wastes, urban storm water & water mgmt. & energy efficiency 		
(NMSH)	DIG formulations and implementations of mational		
Standards and Labelling Program	• BIS: formulations and implementations of national standards/production, quality and EMS certifications BEE : key thrust of EC Act, 2001		
 Capacity Building for Industrial Pollution Management 	 Build capacity at the State and Central level, and develop a framework to address these issues in a comprehensive and systemic manner under an area-wide management approach. The proposed project is aligned with the endeavour of the GoI to establish a National Program for Rehabilitation of Polluted Sites (NPRPS) as a framework for scaling up clean-up and rehabilitation of polluted sites and facilitate the reduction of environmental and health risks associated with legacy polluted sites. 		
Capping, Trading and Taxing			
1. Tax on Coal to Fund Clean Energy	All means to instil price signals to spur energy efficiency and using cleaner fuels		

Policy /Initiative Statement	Key Features of the Policy
2. Renewable portfolio	• States can choose to apply the RPS requirement to all its
standards/obligation	utilities or only the investor owned utilities.
Renewable Purchase	• States can also define what technologies are eligible to count
Obligation (RPO) under	towards the RPS requirements.
the Electricity Act 2003	
is mandated at the state	
level (discussed below	
in "National Policies	
Implemented at the State	
Level")	
3. RECS (Renewable	• Aimed at addressing the mismatch between availability of RE
Energy certificate	resources in state and the requirement of the obligated
System)	entities to meet the renewable purchase obligation (RPO)
	• Cost of electricity generation from renewable energy sources
	is classified as cost of electricity generation equivalent to
	conventional energy sources and the cost for environmental
	attributes.
	• Two categories of certificates, viz., solar certificates issued to
	eligible entities for generation of electricity based on solar as
	renewable Cost of Electricity Generation by Renewable
	Sources Cost Equivalent to Conventional Source Cost for
	Environmental Attributes energy source, and non-solar
	certificates issued to eligible entities for generation of
	electricity based on renewable energy sources other than
C-1 - Park for France Course	solar
Subsidies for Energy Conse.	rvation
1. Financial incentives	• Creating capacity in the area of solar, wind, bio-mass and
Nohra National Solar	other forms of renewal energy generation
Mission	• Supports financially as well as technically to promote solar
2 Einancial incentives by	neater other solar applications widely in the country and
2. Philadelia incentives by the Ministry of New and	particularly in the areas where conventional energy is not
Renewable Energy	Long term anorgy acquity
through the Indian	Ecologically systematic growth
Renewable Energy	Ecologically sustainable growth
Development Agency	• Set target-20,000M w
Energy Conservation in Buil	dings and Municipalities
Energy Conservation	• Provide technical support to BEE to implement the ECBC in
Building Code	a rigorous manner
C	• Develop reference material and documentation to support the
	Code

Policy /Initiative Statement	Key Features of the Policy
	• Develop ECBC Training material for workshops and training
	programs
	• Develop a road map for ECBC implementation
1. Municipal Demand-Side	Municipal Demand Side Management (MuDSM) is devised to
Management	take care of the most common and other issues which are seen as a
	hurdle by the Municipality to shift itself towards the energy
2. State Energy	efficient zone from the existing situation of high amount of energy
Conservation Fund	consumption.
Energy Conservation in Ag	riculture and Forestry Activities
Agriculture, forestry, and	• Consists of those activities, methodologies, awareness, policy
other land use policies	and technologies that influence consumer (farmers)
	behaviour and changes their (farmers) consumption patterns.
1. Agricultural Demand -	
Side Management	• The objective of the AgDSM programme is to reduce peak
(AgDSM)	demand, shift the time during which electricity is consumed
2. National Mission for	to off-peak hours and to reduce the total quantum of
Sustainable Agriculture	consumption.
3. National Mission for a	
Green India	

1.6 GHG EMISSION FACTORS

The emission factors considered for calculations in this manual are tabulated in Table 1.4 (CEA, 2014).

No.	Parameter	Units	Factor
1	Grid Electricity	Kg CO ₂ /kWh	0.82
2	CPP Electricity		
a)	Coal Fired	Kg CO ₂ /kWh	1.03
b)	Diesel Fired	kg CO ₂ /kWh	0.62
c)	Gas Fired	kg CO ₂ /kWh	0.49
3	Coal (Sub-bituminous)	kg CO ₂ /kg	1.1
4	Diesel/Furnace oil	kg CO ₂ /kg	3.12

Table 1.4 Typical GHG Emission Factors

2. CHLOR ALKALI SECTOR PROFILE

2.1 INTRODUCTION

The chlor-alkali industry in India is around 60 years old. There are around 37 caustic soda units spread across India with total installed capacity of 3.20 MMT per annum with the top 10 chlor-alkali plants producing about 60% as shown in Table 1.1. Most of the units have a capacity under 100,000 MTPA with capacity utilisation in the range 79-85%. The Table 2.1 shows the number of plants in India along with their total capacity.

Region	No of	Capacity range	Total Installed Capacity	Installed Capacity
	plants	TPD	TPD	Distribution (%)
East	8	40-365	1147	13
West	16	40-800	4615	52
North	4	235-335	1171	13
South	9	110-375	1943	22

Table 2.1 Distribution of Chlor Alkali Plants in India

As can be seen from Figure 2.3 more chlor-alkali industries are located in western Zone (54%) followed by South with 21%. This can be attributed to two factors namely, availability of salt, the main raw material for the industry and location of user industry in the area.

2.2 CAPACITY UTILIZATION

The average capacity utilization in the Indian industries is around 67.5 %.(2009-14) with installed capacity remaining stagnant since 2011-12 owing to economic downturn world over and reduced off-take from industries like aluminium. The Figure 2.1 shows production vs. capacity utilization for the period 2009-2014.

Figure 2.1 Installed Production vs. Capacity (2009–2014)

Segregation of chlor-alkali plants is done based on scale of production is shown in Table 2.2. Since membrane process is the only used technology in India currently, classification is made based on this basis.

Process	<100 TPD	100-500 TPD ¹	>500 TPD ¹
Nos of units	5	21	6
Installed Capacities(TPY)	85675	19,05,610	12,33,500
Annual Energy Consumption range (TOE)	<12000	15000-90000	35000-1,12,000
Specific Energy Consumption (TOE/T)	NA	0.335-0.310	0.227-0.310
Annual GHG emission range, (Million Tons of CO ₂)	<0.129	0.162-1.047	0.408-1.302
NA= Not Available: 1=	D		

 Table 2.2 Capacity Based Segregation (2013-14)

2.3 USES OF CAUSTIC AND CHLORINE

Sodium Hydroxide or caustic soda is an important chemical which is used in various sectors namely pulp & paper, alumina, soaps & detergents, inorganic chemicals, etc. About 25% of the production used for captive consumption while the rest is used for merchant trade.

The use of caustic sector-wise is shown in Table 2.3. The level of integration for chlorine in India is very low as compared to West Europe and North America, which have an integration level of about 86% and 52%, respectively. While plants outside India are **Chlorine** centric, plants in India are **Caustic** centric. These plants co-produce chlorine in the ratio of 1:0.89. All plants are running on state of the art energy efficient membrane cell technology.

Alumina	14%	Textiles	21%
Pulp and Paper	15%	Dyes & Inks	3%
Organics	12%	Water treatment	3%
Inorganics	8%	Pesticide	1%
Soap and Detergents	7%	Others	16%

 Table 2.3 Breakup of Caustic Consumption in Different Industrial Sectors

Textile industry followed by pulp and paper and aluminum industries account for the largest share of caustic soda consumption. The different uses caustic soda and chlorine are given in Table 2.4.

USE/INDUSTRY	PRODUCTS OR APPLICATIONS OF USE
Production of metals	Alumina, propylene oxide, polycarbonate resin, epoxies, synthetic
and resource	fibers, soaps, detergents, rayon and cellophane.
Pulp and paper industry	Caustic soda is used for pulping wood chips. Chlorine and its compounds are used to bleach wood pulp in the paper production.
Petroleum and natural gas	Caustic soda is used as a drilling fluid.
Manufacture of	Chlorine is used for making ethylene dichloride, glycerin,
organic chemicals	glycols, chlorinated solvents and chlorinated methane.
Plastic industry	Used for making plastics, most notably polyvinyl chloride (PVC), which is being used extensively in building and construction,

 Table 2.4 Uses of Caustic and Chlorine for Various Products/Applications

Pesticides	96 per cent of all pesticides are produced using chlorine
Industrial solvents	A variety of chlorinated compounds are used as industrial solvents, including the main ingredient used in dry cleaning.
Water treatment	Chlorine is used in 98 per cent of the water treatment plants in the world.
Pharmaceuticals	85 per cent of all pharmaceuticals use chlorine.
Other relevant applications	Domestic bleaches, flame-retardants, food additives, refrigerants, insulation, computer chip manufacturing and hospital disinfectants.

Chlor-alkali sector provides direct & indirect employment to about 1.5 lakh people. Nearly 50,000 people including contract labour work in the units manufacturing caustic soda and soda ash plants. In the XIIth Five Year Plan, the industry envisages employment increase to the extent of 5%.

2.4 EXPORTS AND IMPORTS

The Figure 2.2 shows the export and import trend over the period 2009-2014.

Figure 2.2 Indian Imports & Exports of Caustic Soda

2.5 PERFORMANCE AND PRODUCTIVITY INDICATORS

Labour Productivity

Labour productivity trend indicates production of 56-65 MT/quarter per employee as per DGFT reports shown in Table 2.5 which translates to 0.85-1 T NaOH/ employee. Some units during survey have indicated the labour productivity is 0.35 T NaOH/ employee. The labour productivity of European plants reported in BREF is 0.65 T NaOH/ employee.

Productivity (Production/employee) MT per Quarter				
Quarter	2006-07	2007-08	2008-09	2009-10
Q1	56.03	59.67	65.16	63.30
Q2	57.46	62.54	66.77	65.14
Q3	60.25	63.15	59.97	-
Q4	62.11	65.17	62.28	-

 Table 2.5 Labour Productivity

From the above table, the labour productivity is showing increasing trend over the years. The variations in labour productivity may also be due to restriction in production due to difference in chlorine and caustic prices at global level.

Energy Consumption of Chlor-alkali Industry

The raw material involved in the production of caustic soda is salt and water. Electric energy is used in conversion of salt into caustic soda lye, chlorine and hydrogen gas. Thermal energy is used in brine preparation and preparing flakes from lye. In most units hydrogen generated is used as fuel to concentrate lye and produce caustic flakes. This is an energy intensive process where energy costs accounts for 50-60% of total production cost based on cost of power.

The electrolysis phase is the most energy intensive phase. This process involves conversion of AC power to DC power through a rectifier and involves electric conversion losses. Amongst the chlor alkali processes the membrane cell process produces30-35% NaOH concentration and thus the thermal energy required to concentrate the lye to the saleable product concentration is much less in membrane process compared to diaphragm process.

Specific Energy Consumption

Grid power cost in India ranges from Rs. 3.85 to Rs. 6.0 as compared to Rs. 0.8 in Middle East, Rs. 2.25 in USA and Rs. 1.98 in Europe making energy conservation and energy efficiency attractive in Indian chlor-alkali industries.

The specific energy consumption range for chlor-alkali process in relation to the scale of production is shown in Figure 2.3.

Figure 2.3 Specific Energy Consumption vs. Production

As can be seen the correlation of SEC with respect to scale of production is not strong. It is seen that an average of 5-11% savings in specific energy consumption can be achieved in 80% of the production units. The considered bandwidth comprises of the specific energy consumption variations between efficient and inefficient technologies.

The variations in specific energy consumption can be attributed to economies of scale, different cell generation technologies, improved rectifiers, adopting zero gap technology and ODC technology each of which represent options to conserve energy by units having higher specific energy consumption.

As per BEE PAT reports, specific energy consumption varies between 0.262 and 0.997 TOE/T of NaOH. Energy saving target of 0.054 MTOE/yr. which is 5% less than it was in 2008-09 was given by BEE under PAT scheme. This constitutes 0.81% of total national energy saving targets assessed under PAT. The section-wise breakup of energy consumed in chlor-alkali sector is shown in Table 2.6.

V I	1 00	-
Section	Energy kWh/T NaOH	%
Primary & Secondary Brine plant	22.84	0.75
Membrane Cell plant	2784.47	90.91
Chlorine Treatment plant	84.52	2.76
Caustic Concentration unit	8.69	0.28
Caustic Evaporation unit	6.24	0.20
Waste water Treatment plant	5.01	0.16

 Table 2.6 Typical Section-wise Break-up of Energy Consumption

Sodium Hypo plant	3.22	0.11
Utility plants	147.72	4.82
Total	3062.72	100

Energy Consumption Trend in Various Generations of Membrane Cells

The membrane cell has developed continuously since its broad scale implementation in the 1980s. The initial developments focused on anode and cathode coatings, membrane types, reduction of the cathode-membrane gap, electrolyte circulation in the cells, and gas release from electrodes and membranes.

In the 1990s, the electric resistance in the cell structure was decreased by gradually switching from monopolar to bipolar electrolyser configurations. Due to these developments, there was also an increase in the maximum current density which could be applied. The impact of these developments on the specific electricity consumption is shown in Figure 2.4.

Figure 2.4 Power Consumption (kWh/t NaOH) Trend

2.6 BENCHMARKS FOR CHLOR-ALKALI INDUSTRY

Water conservation and benchmarking to world standards improves not only water productivity but also energy productivity due to lesser pumping and treatment costs. The best benchmarks cited are tabulated in Table 2.7.

Section/ Process	Comparable Benchmarks	
Labour productivity ³	0.65-1.0 T NaOH per employee	
#Total Water requirement	5.9 m ³ /T NaOH (48% lye)	
Process water	2-2.25 m ³ /T NaOH	
Cooling Water ⁶	2.5-2.9 m ³ /T NaOH	
• Domestic Water ⁹	0.045 m ³ /T NaOH (45 lpcd)	
Total Energy Requirement ⁸	3040kWh/T NaOH(0.262 TOE/T NaOH)	
(Low end of BEE target)		
Water treatment	1.3 kWh/T NaOH	
Brine purification	2.5 kWh/T NaOH	
Cell house (design stage)	kWh/T NaOH @ CD of 6.0 KA/m ²	
Mono-polar membrane	2550 (@CD of 4KA/m ²)	
• Mono-polar – zero gap	2470 (@CD of 4KA/m ²)	
• Bipolar 4 th Gen zero gap	2130	
• Bipolar 5 th Gen zero gap	2070	
• Bipolar 6 th Gen zero gap	2020 - 2035	
• ODC	1550	
Caustic concentrator – Steam Economy	3 effect: 0.5-0.4	
(Steam to vapour ratio)	4 effect:0.29	
	5 effect: 0.23	
Energy required for flaking ⁱ	95 kWh/ T NaOH (Best benchmark reported)	
Chlorine liquefaction – Energy requirement	120-200 kWh/ T NaOH	
for 98% liquefaction.		
Boiler efficiency	80%	
Pump efficiency	65%	
#Total water requirement assessment is based	l on the following	
1 T lye (48%) produced,		
97.5% Cl ₂ generated is liquefied		
2% of un-liquefied Cl_2 is converted to 33% HCl		
0.5% of un-liquefied Cl ₂ coming through vents is converted to 18% NaOCl		
3-Stage		

Table 2.7 Best Benchmarks for Chlor-Alkali Industry

3. CHLOR-ALKALI MANUFACTURING PROCESS

3.1 OVERVIEW OF CHLOR-ALKALI PRODUCTION

The schematic of chlor-alkali manufacturing process is shown in Figure 3.1. The main raw material for chlor-alkali production is brine. The brine (NaCl) is sent to electrolytic cell where it is electrolysed to form caustic soda (NaOH). Additionally chlorine and hydrogen gases are evolved. Chlorine is directly sold as a by-product after liquefaction. Hydrogen is partly used as fuel in the boiler and partly converted to HCl. Excess hydrogen is vented.

Figure 3.1 Schematic of Chlor-alkali Manufacturing Process

3.2 BRINE PREPARATION

Raw salt is mixed with treated water to prepare saturated brine solution (300-330 gpl) which is then purified to reduce the concentration of impurities (Ca, Mg, Ba, Sr, and metals) to the desired levels required for the electrolytic process.

The treatment is done in two steps, primary and secondary. In the primary treatment, Mg, Ca, Sr, SO_4 are removed and in the secondary treatment trace levels of the above impurities are removed to meet the purified brine quality requirements. The brine preparation and purification is shown in Figure 3.1.

Maintaining the efficacy of each treatment will reduce load on downstream treatment but also reduces energy requirements due to lesser brine depletion requirements and increased brine treatment requirements.

Figure 0.1 Brine Preparation and Purification

3.3 CELL HOUSE

The purified brine at 65-70°C is fed into the electrolyser or cell house. The brine is decomposed mainly into caustic, chlorine and hydrogen. The side reactions cause release oxygen, chlorate, etc. The reactions involved are as follows:

Anode	$Cl_{2(g)} + 2 e^{-} \rightarrow 2Cl_{(aq)}$
Cathode	$Cl_{2(g)} + 2 e^{-} \rightarrow 2Cl_{(aq)}$
Overall reaction	$2 \operatorname{NaCl}_{(aq)} + 2 \operatorname{H}_2O_{(l)} \rightarrow 2 \operatorname{NaOH}_{(aq)} + \operatorname{Cl}_{2(g)} + \operatorname{H}_{2(g)}$

Energy supplied in AC form is transformed into DC form in rectiformer for decomposition of brine. Electrical energy losses and inefficiencies occur due to the following reasons.

- Rectiformer energy losses during conversion from AC to DC.
- Increasing energy consumption over time due to aging of membranes and electrodes.
- Energy losses due to undesirable side reactions.

The power consumption is reported as DC/AC kWh/ton of caustic in Indian Chlor-alkali plants whereas in European countries it is reported in DC/AC kWh/ton of chlorine.

The theoretical voltage requirement for decomposition of brine is 2.2V. In practice, the decomposition voltage requirement varies from 3.5V - 2.9V. The theoretical DC energy requirement is 1474 kWh/ton of caustic (100%) or 1663 kWh/ton of Cl₂ (100%).

The consumption of electricity is also influenced by current density, brine feed temperature, coating of electrode.

Relationship between Cell Voltage and Current density²

The operating cell voltage is a function of current density. At current densities above 1 KA/m^2 , the operating cell voltage varies almost linearly with the current density. It can be expressed by the following relationship:

$$U_{cell} = U_o + k * i \text{ volts}$$

 U_o denotes the cell decomposition voltage whereas i denotes the current density. The values of U_o and k depend on the different cell parameters and electrolysis conditions. The typical values for a bi-polar cell process are as follows:

$$U_0 = 2.42$$
 volts, $k = 0.217$ volts x m²/KA

² Source: AMAI, Delhi

The effect of current density on cell voltage can be determined by the empirical equation as given by the following relation:

E= 2.41 + 0.329 i + 0.24 log i

Actual DC Power Consumption = $\frac{670 * Cell voltage}{Cell Efficiency}$

Where,

E = Cell voltage (V)I = Current density (kA/m²)

Relationship between Life of Electrode and Power Consumption

The effect of coating of electrodes life on power consumption is given by the following relation:

Power Consumption (kWh/T NaOH)= First year power consumption $(kWh/T NaOH) + 35^3$

Where, n= life of the membrane in years

Relationship between Brine Temperature and Power Consumption

Reduction in feed brine temperature will increase the specific energy consumption. The effect of brine feed temperature on power consumption is given by the following relation:

Power Consumption $(kWh/T NaOH) = 1.3595T^2 - 227.86T + 11670$

Where, T = Temperature of Brine feed in °C

³ The equation is based on best yearly cumulative value of power rise due to ageing of membranes. However, on an average the power rise is reported by AMAI is in the range of 40 - 60 kW/T/year

Figure 3.2 Graph on Brine Temperature v/s Power Consumption

Back migration of NaOH to Cathode causes formation of O_2 , OCl⁻, and ClO₃. The back migration and side reactions cause 3-7% loss of current efficiency with respect to caustic production. The reaction governing side reactions are given as follows:

HOC1
$$\rightarrow$$
 OC1⁻ + H⁺
2HOC1 + OC1⁻ \rightarrow ClO₃+ 2H⁺ + 2C1⁻
2H₂O \rightarrow O₂ + 4H⁺ + 4e⁻

Assessing Cell House Performance

Assessing the current efficiency of the cell house is important to operate the cell house efficiently and to determine the power consumption. The assessment can be made by direct or indirect method.

The direct method is the simplest method to calculate the current efficiency and it is based on the mass of product produced per unit of electrical input. However, the NaOH (100%) production of a cell house cannot be measured with sufficient accuracy to give meaningful results.

Direct Method

$$\eta_{Cathode} (\%) = \frac{Kg \ of \ NaOH_{actual}}{Kg \ of \ NaOH_{theoretical}} x100$$

To resolve this problem, the chlor-alkali industry uses indirect method which is an anodic balance approach, i.e., the compositions of the anode gas and the anolyte. The formulae used for efficiency assessment and the model calculation are given below.

Indirect Method

 $\eta_{Cathode}$ (%) = 100 - η_{ClO} - η_{ClO3} - η_{O2} - η_{alkali}

Where,

$$\eta_{Cl0} = \frac{Kg \text{ of } NaOH}{1.492 \text{ x } Q \text{ x } Number \text{ of } Cells} x100$$

$$\eta_{Cl0} = \frac{1.042 C_{Cl0 \text{ anolyte }} V_{anolyte}}{Q \text{ x } 2 \text{ x } Number \text{ of } cells} x100$$

$$\eta_{Cl03} = \frac{1.97[(C_{Cl03 \text{ anolyte }} \text{ x } V_{anolyte}) - (C_{Cl03 \text{ feed }} \text{ x } V_{feed})]}{Q \text{ x } Number \text{ of } cells} x100$$

$$\eta_{O2} = \frac{2V_{O2}(100 - \eta_{Cl0} - \eta_{Cl03})}{(V_{Cl2} + 2V_{O2})} x100$$

$$\eta_{alkali} = \frac{[C_{NaOH} + 0.7548 C_{Na2CO3} + 0.4762 C_{NaHCO3}] x V_{feed} x 100}{1.4923 x Q x Number of cells} x 100$$

Where,

$\eta_{ClO3,O2,ClO}$	Current efficiency loss due to chlorate, oxygen, ClO formation			
$\mathcal{C}_{ClO3,ClO\ anolyte\ ,ClO3\ feed}$	Concentration of ClO ₃ , ClO in the anolyte, feed brine (grams/ liter)			
Vanolyte ,feed	Volumetric flow rate of the anolyte, feed brine (m ³ /hr)			
V _{02, Cl2}	Volume of O_2 , Cl_2 in the anode gas composition (%)			
η_{alkali}	Current efficiency due to alkali (NaOH, NaHCO3 and Na2CO3)			
С _{Na2CO3,NaHCO3,NaOH}	Concentration of NaCO ₃ , NaHCO ₃ , NaOH in the feed brine			
	(grams/litre)			

Sample Calculation

Analysis Data		Field Data	
C _{Na2CO3}	0.212 gpl	V _{feed}	$3 \text{ m}^3/\text{hr}$
C _{NaOH}	0.0005 gpl	V _{anolyte}	$2.36 \text{ m}^3/\text{hr.}$
C _{NaHCO3}	5 gpl	Q	61.5 kA
C _{ClO3 anolyte}	10.604 gpl	Number of cells	3
C _{ClO3} feed	7.6 gpl	Cell voltage	2.7 V

 $Actual \, DC \, Power \, Consumption = \frac{670 * \, Cell \, voltage}{Cell \, efficiency}$

 $Actual \, AC \, Power \, Consumption = \frac{Actual \, DC \, Power \, Consumption}{Rectiformer \, efficiency}$

Cell Current efficiencies are seen to range from 92% to 96% mainly variant with type of coatings deployed, condition and frequency/periodicity of recoating.

3.4 CAUSTIC CONCENTRATION

Electrolysis of brine yields 32% caustic. This is concentrated to 48% using 3 to 5 stage multiple effect evaporators or concentrated to 98% by further concentrating the 48% lye. In Indian chlor-alkali plants, 3-stage falling film evaporators are generally being used for evaporating the 32% caustic solution to 48% concentration as they have better heat transfer coefficient and less fouling tendency. Low pressure steam is used for concentration in the evaporators.

This 48% lye is sold out or it is fed to the flaking unit to produce flakes using thermic fluid heaters. The concentrated high temperature anhydrous caustic soda is cooled in rotary flaker by cooling water and converted into caustic soda solid flakes at their fusing point temperature. The process flow diagram for concentrating 32% lye to 48% is shown in Figure 3.3 and the process of caustic fusion is shown in Figure 3.4.

Figure 3.3 Process Flow Diagram for Caustic Concentration

Figure 3.4 Process Flow Diagram of Caustic Fusion

Energy Consumption for Caustic Lye Concentration

Both steam and electricity is used for concentrating lye. The energy consumption in concentrating lye is given in the following Tables:

Table 3.1 Basis and Assumptions for Assessment of Electrical Energy Consumption Energy Consumption					
For Caustic lye Concentration					
Basis	TPD	Water to be evaporated	ТРН		
Production 48% lye	250	-			
32%	375	41.67			
36%	333.33	47.62			
42%	285.71	35.71			
Total water evaporated		125			
Steam Requirement (assuming 3 stage MEE and Steam economy	(2.5		2.6		
01 0.5)	62.5		2.0		
Flash steam (assuming 18%)	11.25		0.47		
recovery (assumed) %	0.95				
Process+ Flash steam condensate					
Recovery	176.25		7.34		
Process condensate loss	8.81				
Process condensate loss /T NaOH	0.04				
Formulae /Thumb-rule/ Constants					
$P(kWhr) = \frac{Q(m^3/s)x Total head (hd - hs, m)x density (kg/m^3)x g(m/s^2)}{1000 x \eta_{pump} x \eta_{Mot}}$					
Quantity of fuel required for salt heating $\left(\frac{Kg}{hr}\right) = \frac{\text{Heat energy needed for heating salt (KJ)}}{\text{calorific value of fuel}\left(\frac{KJ}{Kg}\right)*\eta \text{ of furnace}}$					
$Delivery = W_{rev} = \frac{\gamma}{\gamma - 1}R(T_2 - T_1) = \frac{\gamma}{\gamma - 1}RT_1\left(\frac{T_2}{T_1} - 1\right) = \frac{\gamma}{\gamma - 1}RT_1\left(\left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} - 1\right)$					
g	9.81	m/s^2			
	9700	kcal/Kg			
LDO calorific value	40740	kJ/Kg			
Cp (NaOH)	3.4	kJ/Kg. K			
Cp (H ₂ O)	4.2	kJ/Kg. K			
Assumptions:					
Pump efficiency factor	0.65				

Motor efficiency factor	0.95	IE4
Vacuum pump efficiency	0.72	
Boiler Efficiency factor	0.8	
3-Stage MEE	0.5	
4-Stage MEE	0.3	
5-stage MEE	0.25	Kg steam/ Kg water evaporated/
Thermic Fluid heater (Furnace)		
Efficiency	0.78	
Cp/Cv	1.4	
Mass rate of water vapour	186.86	Kg/hr

Table 3.2 Electrical Energy Requirement Assessment in Caustic Lye Concentration						
Details	Flow, Q	Head (hd-hs)	Density (p)	Energy Consumption, P		
	m ³ /d	m	kg/m ³	kW		
32% Feed Pump-1	286.26	30.00	1310	49.65		
Process Condensate Pump-1	176.25	30.00	1000	23.33		
Vacuum Pump-1				16.59		
Condensate Steam Pump-1	11.25	30.00	1000	1.49		
Separator Pump-36%	245.64	30.00	1357	44.13		
36% Feed Pump	238.10	30.00	1400	44.13		
Vacuum Pump-2				16.59		
42% Feed Pump	195.69	30.00	1460	37.83		
Separator Pump-42%	195.69	30.00	1460	37.83		
Vacuum Pump-3				16.59		
48% Lye Pump	166.00	30.00	1506	33.10		
Total energy consumption, kWh/day				321.24		
SEC for 250 TPD of NaOH	1.28					
GHG emission in kg of CO _{2e} (1 kWł	1.17					

Table 3.3 Thermal Energy Requirement Assessment in Caustic Concentration (lye)							
Steam required	T/250T NaOH	T/T NaOH					
MEE	62.5	0.25					
VAM	0.5	0.002					
OTHERS	0						
Steam	63	0.252					
Fuel used for steam generation	LDO						
Steam/Fuel	13						
Fuel used for steam generation	4.85	0.02					
Fuel used for salt heating	18.27	0.07					
Table 3.4 Electrical Energy Requirement Assessment in Caustic Concentration (flakes)							
--	--------------	---------------------------------	----------------	-----------	--------------	-------------------	-----------------------
	Produ	Production (TPD) Water to be ev			to be evap	orated (TPH)	
48% Caustic Lye			25	250		•	
57% Caustic Lye			210.5	53			8.77
98% Caustic			122.4	5			5.10
Salt used for heating 57% lye			345.	.8			14.41
Formulae /Thumb-rule/ Consta	ants						
$P(kWhr) = \frac{Q(m^3/s)x \text{ Total head } (hd - hs, m)x \text{ density } (kg/m^3)x g(m/s^2)}{1000 x \eta_{pump} x \eta_{Mot}}$							<u>)</u>
Heat Capacity, $q(KJ) = m\left(\frac{\kappa g}{hr}\right) * Cp\left(\frac{\kappa J}{Kg.K}\right) * \Delta T(K)$ Blower Power, $P(Hp) = \frac{Q(cfm)xPw(inch)}{6365x \mu}$							
	g	g g		9.81	m/s^2		
	Cp (HT S	Salt)	Salt) 0.3		kJ/kg	Κ	
	Cp (HT Salt)		1.34 Kcal/kg ℃		kg ℃		
Assumptions							
Pump efficiency	0.65						
Motor efficiency	0.95		IE4				
Details		Flo Q)w 2	Ho (hd	ead -hs)	Density (ρ)	Energy Consumption
		m^3	/d	J	n	Kg/m ³	kW
48% feed pump		16	6.00		30	1506	33.10
57% feed pump		135.82			30	1550	27.87
Salt pump		19	2.53		30	1796	45.78
Flaker blower							2.20
Flaker cutter motor					1.50		
Total energy consumption, KWh/day						110.45	
SEC for 250 TPD of NaOH						0.44	
GHG emission in kg of CO_{2e} (1 kWh = 0.91 kg CO_2)					0.40		

Table 3.1 Thermal Energy Requirement Assessment in Caustic Concentration (flakes)				
Fuel for salt heating:				
Mass of 57% caustic, TPH	8.77			
Temperature of heated salt To, °C	350.00			
Temperature of caustic flakes Ti, °C	90.00			
Difference in temperature, °C	260.00			
Heat energy consumed in final concentrator	7754385.96			
Fuel for salt heating (kg/hr)	244.02			
Fuel for salt heating (T/250T NaOH)	5.86			

Table	3.6	Heat	Transfer	Salt	Requiremen	nt
-------	-----	------	----------	------	------------	----

Mass of NaOH	Cp of NaOH	Diff in temp (NaOH)	Mass of HT salt	Cp of HT salt	Diff in temp (HT salt)
Kg/hr.	KJ/Kg K	°C	Kg/hr.	KJ/Kg K	°C
8750	3.4	=(350-90)	14408	1.34	=(400-30)

3.5 CHLORINE

Chlorine generated in cell house is partially dissolved in return brine solution and the remaining is released as gas. Saturated chlorine is released from cell house at 80-90°C. It contains brine mist, impurities like N_2 , H_2 , O_2 , CO_2 and traces of chlorinated hydrocarbons.

Chlorine is cooled to 18° C using chiller and dried using 96-98% H₂SO₄ to avoid downstream corrosion and minimise Cl₂.nH₂O formation. Six–stage H₂SO₄ counter-current contact towers are used to reduce water content to 20 mg/m³.

The dried Cl_2 is passed through demisters to remove H_2SO_4 droplets. The dried Cl_2 is compressed using centrifugal compressors by maintaining chlorine temperatures <120°C as dry chlorine at high temperature react uncontrollably with iron. The compressed gas is cooled to -13°C at 1 bar using any of the following liquefaction system (refer Table 3.7).

Liquefaction system	Refrigerant	Costs ¹
High pressure (7–16 bar) and High	Water	Low energy costs
temperatures (~40°C)		
Medium pressure (2–6 bar)and	Water,	Moderate energy
medium temperatures (between -	HCFC/HFC or	costs
10°C and -20°C)	ammonia	
Normal pressure (~1 bar) and low	Mainly	High energy costs
temperatures (below -40°C)	HCFC/HFC or	
	ammonia	

Table 3.7 Chlorine Gas Liquefaction

Along with chlorine gas, ingress air constituting non-condensable gases is also present. After liquefaction the non-condensable gases containing chlorine traces are scrubbed before venting out to meet the emission standards for chlorine. These gases termed as tail gases are absorbed in caustic solution to produce hypo or synthesized to produce other products like HCl, bleach and FeCl₃.

The process of chlorine liquefaction and scrubbing of tail gases is illustrated in Figure 3.5.

Figure 3.5 Process Flow Diagram for Chlorine Liquefaction

3.6 HYDROGEN GAS MANAGEMENT

During the caustic production in cell house, hydrogen is released along with chlorine. The produced hydrogen is used in the following ways:

- Steam generation (15%)
- HCl production (64%),
- Bottled (7%), based on the market requirement and balance hydrogen is vented out to atmosphere.

The percentage of vented hydrogen varies from plant to plant and averages about 14%.

3.7 UTILITIES

Water Treatment

Water is required mainly for brine operation. The number of water treatment steps depends on water treatment method selected. In chlor-alkali plants, the treatment is primarily focused to control calcium and magnesium. A typical water treatment system in a chlor-alkali plant is as follows:

Clarifier \rightarrow MG-Filter \rightarrow Strong Acid Cation unit \rightarrow Degasser \rightarrow Strong base Anion unit

Alternatively, water can be treated using RO with 75% throughput followed by mixed bed resin to reduce the chemical consumption. Considering the environmental effects of using chemicals and life cycle analysis of entire water treatment system, this choice is better despite higher energy consumption in RO treatment.

Since, most plants use ion exchange process for demineralisation, this manual covers aspects pertaining to this process only. The process flow diagram given in Figure 3.6 depicts a typical treatment system, commonly used in chlor-alkali industries along with energy usage areas in terms of pumping and mixing.

Figure 3.6 Water Treatment System Process Flow

Water Consumption

In chlor-alkali plants, water uses can be summarized as follows:

- Process water for brine preparation
- Preparation of reagents used for the brine purification
- Production of caustic in the cell house
- Dilution of the produced caustic in the caustic circuit
- Water for steam generation
- Cooling water for cooling tower water makeup, and
- Domestic use.

Reported specific water consumption for a chlor-alkali plant varies from 4-12 m^3 /Ton of NaOH. The wide variation in water consumption could be due to the following:

- Raw water quality
- Caustic form (48% caustic lye vs. 98% caustic flakes)
- Amount of HCl and Hypo produced.
- Steam and process condensate recovery
- Reuse of alkaline waste brine generated during ion exchange column regeneration

An understanding of water uses and consumption will help conserve water and reduce energy consumed in treating and pumping water across the production chain.

Assessment of Water Consumption in Chlor-alkali Plant

Water required is the summation of:

- Water required for NaCl reaction.
- Water that goes with lye
- Steam and blow down losses
- Vapour losses during caustic concentration
- Water lost with water treatment and brine sludge cake
- Water lost through evaporation and blow-down in cooling towers
- Water used for preparing chemicals for tail gas scrubbing and others

Water balance for chlor-alkali plant considering brine preparation, steam, HCl production and tail gas treatment is shown in Table 3.8.

A - PROCESS		
A1- For Brine preparation		
$2NaCl+2H_2O \rightarrow 2NaOH+C$	$l_2 + H_2$	
$117 + 36 \rightarrow 80 + 7$	71 + 2	
NaCl concentration	320	g/l
Water required for brine preparation as per NaCl		
concentration	3.2	m ³ /T NaCl
1T NaCl	0.684	T NaOH
NaCl required	1.463	T/T NaOH
Water required for brine preparation	4.680	m ³ /T NaOH
Water required based on stoichiometry	0.450	T/T NaOH
Water required for 48% lye	1.083	m ³ /T NaOH Lye
Brine Treatment		
Assume, 0.2% impurities in NaCl	0.020	T/T NaCl
	0.029	T/T NaOH Lye
Moisture in cake assuming 30% solids content	0.068	T/T NaOH Lye
Water required for make-up brine preparation	1.639	T/T NaOH Lye
A-2: Steam		
Steam economy @ 2.19 T water evaporation/ T Steam	0.457	T Steam/T water
Water to be evaporated for Concentrating lye from 32-		
48%	0.500	T water/ T lye
Steam required for Concentrating lye from 32-48%	0.600^{4}	T Steam/T Lye
Blow-down losses (2% of steam generated)	0.009	T/T NaOH Lye
Condensate recovery loss (95% recovery assumed)	0.023	T/T NaOH Lye

Table 3.8 Water Balance

Steam loss	0.032	T/T NaOH I ve
Process condensate loss (Assumed 5%)	0.032	m^3/T NaOH Lyc
Flocess condensate loss (Assumed 5%)	0.031	III / I NaOH Lye
Steam and process condensate makeup water required	0.063	
A-3 HCl production [*] (It is assumed 2% of Cl_2 get	enerated that	is not liquefied is only
converted to HCI. For additional HCI production a	ajustment aco	cording to calculations
	1	
$H_2 + C_{12} + Z_1 + C_{12} + Z_2 + C_{12} + C$	/I	
$\frac{2}{2} + \frac{17}{7}$	2 0 2 0	$m^3/T 1000/ IIC1$
UCI Draduation (20% liquefied C1.)	3.030	III / I 100% HCI T 100% UCI/T NoOU
HCI Production (2% inquefied Cl_2)	0.018	T 100% HCI/T NaOH
Water required for 33% HCl production	0.103	T/T NaOH Lye
HCl Production (33%)	0.086	T 33% HCI/ T NaOH
A-4 Tail Gas Treatment (It is assumed 0.5% of Cl2 g	generated com	es out as tail gas that is
converted to NaOCI. For additional NaOCI pro	oduction adj	ustment according to
$(1 - 1)^2 N_0 (1 - 2) N_0 $		
$\frac{Cl_2 + 2 \text{ NaOH} + 2 \text{ NaOH}}{71} + \frac{80}{2} + \frac{140}{2}$	H_2	
71 + 807 149	+ 2	
NaOCI are duesd	0.0088	
	0.0180	1/1 NaOH Lye
NaOCI (18% produced)	0.1031	
Water required for 18% NaOCI (tail gas scrubbing)	0.0845	
	1.02	3/77.11.011.1
FOR PROCESS [A-1 +A-2+ A-3+ A-4]	1.92	m ³ /T NaOH Lye
B - Cooling	2.0	3
Water required for cooling tower losses (Assumed)	2.9	m ⁷ /T NaOH Lye
	1	
C- Domestic		
Labour productivity (0.3-1 is reported. Assumed 0.8	0.8	
for Calculation)		
Domestic water requirement (45 Lit/ Person as per	0.036	2
factories act)		m ³ /T NaOH Lye
	1	
Total Primary and Secondary treated water	4.69	3/77.22.011.1
required		m ³ /T NaOH Lye
Assuming 5% water losses along with water		
treatment sludge		3
Total Raw water required	4.9	m ³ /T NaOH Lye

Energy Consumption for Water Treatment

Energy is consumed for

- Pumping water from one treatment stage to other.
- Supplying air in the degasser

• Mixing the chemicals

Energy consumption for a typical 250 TPD caustic plant (48% lye) consuming 1225 m^3 /day (Specific Water consumption = 4.9 m^3 /T NaOH) water will contribute only about 1.8 kg of CO₂ /T of NaOH.

Energy Consumption for Brine Purification

Energy is primarily consumed for mixing and dosing chemicals and pumping brine from one purification stage to another. Energy consumption and methodology of assessing GHG emissions in a typical brine purification plant considering a typical 250 TPD caustic plant consuming 410 m^3 /day water is presented in Table 3.10.

Table 0.10 Assessment of Energy Requirement in Brine Purification						
Production	250 TPD lye					
Formulae /T	'humb-rule/ Constants					
Л	$Q(m^3/s)x$ Total he	ead (hd-hs	s, m)x density ((kg/m³)x g (r	n/s^2)	
P	(RWnr) =	1000 x ŋ	pump ^{x ŋ} Mot			
g		9.81	m/s^2			
Mixing powe	er	10	W/m ³			
Assumption	S:					
Pump efficie	ncy	0.65				
Motor efficie	ncy	0.95	IE4			
		1	1			
Equipment	Details	Flow,	Head	Density	Energy	
Number		\mathbf{Q}	(hd-hs)	<u>(ρ)</u>	Consumption	
		m [°] /d	m	Kg/m [°]	kW	
B-PE-1	Brine saturator pump	481	30	1200	76.40	
B-PE-6	Brine precipitator pump	481	30	1200	76.40	
B-PE-7	Clarifier pump	481	30	1200	76.40	
B-PE-9	Anthracite filter pump	481	30	1200	76.40	
	Anthracite filter pump	481	30	1200	76.40	
	Anthracite filter pump	481	30	1200	76.40	
	Anthracite filter pump	481	30	1200	76.40	
B-PE-10	Polishing filter pump	481	30	1200	76.40	
B-PE-11	Ion-exchange pump	481	30	1200	76.40	
B-PE-2	NaOH Pump	0.0020	10	1350	0.000119	
B-PE-3	Na ₂ CO ₃ pump	0.0013	10	1100	6.47E-05	
B-PE-4	Ba ₂ CO ₃ Pump	0.0013	10	1100	6.47E-05	

B-PE-5	Flocculant pump	0.0013	10	1100	6.47E-05
B-PE-8	Precoat pump	0.0013	10	1100	6.47E-05
	Mixers				
B-ME-1	Brine Saturator Mixer	481			4.81
B-ME-7	Brine Precipitator Mixer	481			4.81
B-ME-8	Clarifier Mixer	481			4.81
B-ME-2	NaOH Mixer	481			4.81
B-ME-3	Na ₂ CO ₃ mixer	481			4.81
B-ME-4	Ba ₂ CO ₃ mixer	481			4.81
B-ME-5	Flocculant mixer	481			4.81
B-ME-6	Precoat solution mixer	481			4.81
	Total				726.05
SEC kW/T	SEC kW/T NaOH lye				
GHG emission in kg of CO_{2e} (1 kW = 0.91 kg CO_2)					2.64

Steam Generation and Distribution

Steam is the primary source of thermal energy in a chlor-alkali plant constituting 6 % of total energy consumed. In chlor-alkali industry steam is primarily used for the following:

- Concentrating caustic lye from 30-32% to 48% in a triple effect back feed falling film evaporator. The heat carried by vapours generated by exchanging steam heat is used to concentrate caustic from 32-36-42-48% in succession.
- Used as mechanical energy in steam ejectors for creating vacuum,
- In Vapour-absorption refrigeration systems for liquefying chlorine in place of ammonia chillers.

The areas where steam is used and the quality of steam used is summarized in Table 3.11.

Application	Pressure Level(s)	Remarks	
	Thermal App	lication	
Brine Processing		Brine to cell house is required at 65-	
Heating	L, M	70°C and hence needs to be heated	
Anthracite regeneration	L,M	using LP steam.	
Chlorine Processing		Vaporising liquid chlorine for	
Vaporization	L	downstream use. Tail gas chlorine	
Tail gas stripping	L	recovery using a vapour-absorption	
Condensate stripping	L	refrigeration chilling plant.	
Caustic processing			
Heating	L, M		
Evaporation	M, H		
Purification	M, H		

 Table 3.11 Steam Consumption in Chlor-alkali Unit

Application	Pressure Level(s)	Remarks		
Plant-wide		Used for tracing leakages, purging of		
Tracing	L	equipment during maintenance,		
General utility	L, M	cleaning, brine conditioning, etc.		
Purging (equipment and lines)	L			
Mechanical Application				
Ejectors	M, H			

*Legend (Steam Pressure): L =low (<900kPa), M= medium (900 kPa to 1800 kPa), H = High pressure (>1800 kPa)

Furnace oil or hydrogen generated in process is used to generate steam. The generation and distribution of steam on an average constitutes energy losses to the tune of 20-30%.

The steam condensate after recovering flash for use in 2^{nd} effect evaporator is used as boiler feed. The process condensate along with flash steam condensate is used to makeup brine water.

Specific steam requirements in cell house vary from about 0.5–0.7 tons per ton of NaOH. This variation is due to varying multiple effects for concentration of caustic from 32% to 48% as shown in Table 3.12.

Table 3.12 Specific steam Consumption (Tons/Ton of NaOH)					
3-Stage MEE	0.5				
4-Stage MEE	0.3				
5-stage MEE	0.25				

For VAM chillers, steam consumption in terms of kg steam/TR for multiple stages is given in Table 3.13.

Table 3.13 Steam Economy of VAM(Kg Steam/TR)		
1-Stage VAM	8 kg @2 bar	
2-Stage VAM	4 kg @8 bar	
3Stage VAM	3.5 kg @10 bar	

The other steam efficiency measures include the following:

- Recovering heat from products (Cl₂ gas used to heat feed brine)
- Recovery of steam condensate
- Using MVR or TVR.

For a 250 TPD plant, major requirement is in caustic concentration which is about 80-90% of the total steam requirement. Hence, the steam requirement based on number of evaporator effects and their steam economy along with requirements in other sections can be calculated as follows:

For a 250 TPD caustic plant @ 0.7 tons steam/Ton Na	aOH @ 178°C and 10 bar
Steam required	=175 TPD
	= 7.3 TPH
Assuming boiler efficiency of 80%, boiler capacity	= 9.11 TPH
Boiler capacity required	= 10 TPH

Based on steam requirement it can be considered a boiler of around 10 TPH is suitable for a 250 TPD caustic plant. The steam generated is used for evaporation in a closed cycle.

Compressors

In chlor-alkali plants, compressors—reciprocating/rotary and centrifugal compressors for various applications such as,

- Supplying instrumentation air.
- Chlorine displacement by padding compressor.
- For compressing dry chlorine before liquefaction.

Benchmarks considered for energy consumption for generating compressed air are:

Compressor type	Benchmarks (kWh/Nm ³ /min)
Centrifugal	0.07
Reciprocating	0.11
Screw	0.09

Benchmarks considered for chlorine liquefaction are:

Chiller Compressor	Benchmarks
using Freon /NH ₃	(kWh/TR)
Centrifugal	0.6
Reciprocating	0.9
Screw	0.75

VAM chillers are increasingly used for reducing/ or optimising energy usage.

Energy Consumption for Cl₂ Liquefaction

Assuming centrifugal compressors being used for compression of chlorine, For a 250 TPD caustic plant @ 222 TPD of Cl₂, produced,

1T NaOH	$= 0.8875 \text{ T Cl}_2$
887.5 kg Cl ₂	$= 280.175 \text{ m}^3 \text{ Cl}_2$ @ STP
	$= 341 \text{ m}^3 \text{ Cl}_2 \otimes 60^{\circ}\text{C} \text{ and } 1 \text{ atm.}$
For 250 TPD	$= 222 \text{ T of } \text{Cl}_2 \text{ is produced}$
	$= 75,700 \text{ m}^3 \text{ Cl}_2/\text{day}$
	$= 52.57 \text{ m}^{3}\text{Cl}_{2}/\text{min} (@60^{\circ}\text{C})$
	$= 47 \text{ Nm}^3 \text{ Cl}_2/\text{min}$

Energy required for compressing Cl₂ using centrifugal compressor @ 0.07 kwh./Nm³/min.

Total energy	= 0.07* 47
Amount of Cl ₂ produced	= 3.29 KWh/ min = 222/ (24*60) = 0.15
Energy required /T Cl ₂	= 3.29/0.15 = 21.93 kW/T NaOH

Energy Consumption for Instrumentation

Assumed that no. of instruments requiring air in	n the chlor alkali plant is 20.
Compressed air @ 5 Nm ³ /instrument/ min	= 20 x 5 x 24 = 2400 Nm ³ /hr.
Power required for reciprocating compressor	= 0.11 x 144000 = 15840 kWh/ 250 T NaOH = 63.36 kWh/T NaOH

Transformers and Rectifiers

Two types of transformers namely power transformer and distribution transformer are used. Power transformers are high voltage step-down transformer used in the range of 132 KV/11KV, 33KV/11KV to bring the power to the plant. Distribution transformer used are in the range 125 kVA to distributed the power to the utilities.

Transformer efficiency varies in the range of 93% old- 97% energy efficient. Rectiformers used in the plant is the combination of step-down transformer and rectifier which converts AC to DC. The different types of rectiformers used in chlor-alkali plants are

- Oil forced water forced(OFWF) cooling
- Oil natural air natural(ONAN) cooling
- Oil forced water flow(OFW) cooling

Rectiformer efficiency various from 91% (old -diode based) to 98% new-thyristor based.

Energy Losses in Transformer and Rectiformer

AC power consumption required for the production of caustic efficiency of the transformer is assessed by direct and indirect method. Direct method is simple output by input of the transformer. Indirect method various heat losses occurred in the transformer is considered and efficiency is computed.

Performance Assessment of Transformer

Direct Method:

 $\eta_{Transformer}$ (%) = $\frac{T_{Output}}{T_{Input}} x100$

Indirect Method:

$$\eta_{Transformer} (\%) = \frac{T_{Input} - Loss_{Iron} - Loss_{Copper}}{T_{Input}} x100$$

Formula Used:

$$Loss_{Copper} = \left(\frac{Load \, kVA}{Rated \, KVA}\right)^2 \, x \, full \, load \, losses$$

Where,

T _{Input}	Input to the transformer (kW)
T _{Output}	Output from the transformer (kW)
Loss _{Copper}	Copper Losses at operational load (kW)
Loss _{Iron}	Iron Losses or No load losses (kW)
$\eta_{Transformer}$	Efficiency of Transformer (%)
Loss _{No Load}	No load losses in the transformer
Loss _{Full Load}	Full load losses in the transformer

Direct Method

$$\eta_{Rectiformer}$$
 (%) = $\frac{RF_{Output}}{RF_{Input}} \times 100$

Indirect Method

 $\eta_{Rectiformer}$ (%) = $\eta_{RF_Transformer}$ (%) x $\eta_{RF_Rectifier}$ (%)

Formulae Used:

 $\eta_{RF_transformer} (\%) = \frac{RF_{Input} - Loss_{iron} - Loss_{Copper}}{RF_{Input}}$

$$\eta_{RF_{transformer}} (\%) = \frac{RF_{Input} - m_{tc}C_{tc}(T_{tc_in} - T_{tc_out})}{RF_{Input}}$$

$$Loss_{Copper} = \left(\frac{Load \ kVA}{Rated \ KVA}\right)^2 \ x \ full \ load \ losses$$

$$\eta_{RF_rectifier} (\%) = \frac{\{RF_{Input} - Loss_{iron} - Loss_{iron}\} - m_t C_p (T_{in} - T_{out})}{RF_{Input} - Loss_{iron} - Loss_{Copper}}$$

$$\eta_{RF_{rectifier}} (\%) = \frac{\left\{ RF_{Input} - m_{tc}C_{tc}(T_{tc_in} - T_{tc_out}) \right\} - m_{rc}C_{rc}(T_{rc_in} - T_{rc_out})}{RF_{Input} - Loss_{iron} - Loss_{Copper}}.$$

Where,

<i>RF_{Input}</i>	Input to the Rectiformer (kW)
<i>RF_{Output}</i>	Output from the Rectiformer (kW)
Loss _{Copper}	Transformer Copper Losses at operational load (kW)
Loss _{Iron}	Transformer Iron Losses or No load losses (kW)
$\eta_{RF_transformer}$	Efficiency of Transformer of Rectiformer (%)
Loss _{Noload}	No load losses in the transformer of rectiformer
Loss _{Fullload}	Full load losses in the transformer of rectiformer
m _{rc}	Mass flow rate of rectifier coolant (kg)
C _{rc}	Specific heat of rectifier coolant
T _{rc_in}	Input Temperature of rectifier coolant (°C)
T _{rc_out}	Output Temperature of rectifier coolant (°C)
m _{tc}	Mass flow rate of transformer coolant (kg)
C _{tc}	Specific heat of transformer coolant
T _{tc_in}	Input Temperature of transformer coolant (°C)
T _{tc_out}	Output Temperature of transformer coolant (°C)

The Table 3.14 shows methodology of calculation of energy loss in Transformer and its cooling water requirement.

Table 3.14 Energy Loss in Transformers				
BASIS	250	TPD 48% lye		
		Assumed 5th Gen Bi-		
Energy consumption in DC kW/T of NaOH	2390	polar		
DC power required	597500	kW/day		
AC to DC conversion Efficiency	97.5	%		
Energy loss	15320	kW/day		
Energy loss per hr.	638	KWh.		
Energy loss	548985	kcal		
Assumed rectiformer type: Oil Forced Water Forced Cooling type				
Consider,				
Cp oil	0.85	kcal/kg °C		
Temp difference of oil	3	°C		
Mass of oil	215288.3	kg/hr.		
Cooling water required	26229.58	kg/hr.		
CT water flow rate required	26.23	$m^3/hr.$		

For a typical set of cooling towers in a chlor- alkali industry, the parameters measured are given in table 3.15.

Table 3.15 Assessment of Energy Requirements for Cooling Needs		
Production: 250 TPD lye		
Formulae /Thumb-rule/ Constants		
$Q(m^3/s) \times Total head (hd - hs, m)$	n)x densit	$ty(kg/m^3)xg(m/s^2)$
$P(kwnr) = \frac{1000 x \eta_{pur}}{1000 x \eta_{pur}}$	пр ^{х η} Мо	t
Evaporation Loss $(m^3/hr) = 0.00085 * 1.8 * circulation rate (m^3/hr) * (T_4 - T_1)$		
Evaporation 1000 (m / m.) 0.000000 × 1.0 × etr ea	ion Loss	
Blow down= $\frac{EVaporation}{COO}$	C-1	
CT Losses, $(m3/hr)$ = Evaporation Loss + drift los	ss + Blow	down loss+COC
Total cooling water required,(m ³ /hr)=Quantity of cooling water required (m ³ /hr)+CT		
Losses(m ³ /hr)		
g	9.81	m/s ²
Pump Efficiency	0.65	
Motor Efficiency	0.95	
Cp Cl ₂	0.48	kJ/kg K
Cp NaOH	3.4	kJ/kg K
Cp HCl 33%	4.18	kJ/kg K
Cp H ₂ O	4.18	kJ/kg K

Cp H ₂ SO ₄	1.38	kJ/kg K
Energy released due to NaOCl formation	1463	kJ/Kg of Cl ₂ gas
Latent heat of vaporization of water	2319	kJ/kg
Heat of fusion of NaOH	209.2	kJ/kg
Assumption		
Head	10	m
Density	1000	kg/m ³
Density Freon	3660	kg/m ³
Pump efficiency	0.65	
Motor efficiency	0.95	
Drift Loss	2%	
COC	4	

Energy requirement for pumps used for cooling is given in Table 3.16.

Table 3.16 Energy Requirement Assessment for	or Pumps Used for	Cooling Needs
--	-------------------	----------------------

	Q		l	SEC		
Process unit	m ³ /hr.	m ³ /s	kWh/da y	kWh/da y	kWh/ T NaOH lye	
Caustic Concentration						
Process Condensate	1480.36	0.41	1567.9	1567.9	12.12	
Product Cooling	69.73	0.019	73.85	73.85	13.13	
Caustic Flaking	·					
Process Condensate	5.71	0.002	6.05	6.05	0.27	
Flaking Drum	26.53	0.007	28.10	28.10	0.27	
Chlorine Liquefaction						
Chlorine Cooling	4.35	0.001	4.61	4.61		
HCl Cooling	54.70	0.015	57.94	57.94		
Transformers	27.02	0.008	28.62	28.62	4.35	
Freon chiller			298.8			
Miscellaneous	32.78	0.009	34.72	34.72		
VAM	•			•	90.57	
Total					108.32	
GHG emission in kg of CO_{2e} (1 kWh = 0.91 kg CO_2)					98.57	

4. BEST PRACTICES

This section includes area-wise best practices including energy efficiency and conservation measures in the chlor alkali plant.

4.1 CELL HOUSE

The energy losses in the cell house can be broadly classified as follows:

- Energy losses due to side reactions in the cell
- Energy losses due to voltage drop across different sections of the cell

Reducing Energy Losses due to Side Reactions

The Table 4.1 shows energy efficiency potential by controlling side reactions in cell.

Side Reaction	Typical Reduction in Efficiency (%)	Parameters for Improvement
$HOC1 \rightarrow OC1^- + H^+$	1.3	• The partial pressure of chlorine.
$2\text{HOCl} + \text{OCl}^{-} \rightarrow \text{ClO}_3 + 2\text{H}^+ + 2\text{Cl}^-$	2.3	 The concentration of Cl⁻ ions, i.e. the concentration of salt in anolyte. O and ClO i can be depressed by selecting
$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	4.1	• O ₂ and ClO ₃ can be depressed by selecting anode coating with suitable characteristics and/or by decreasing the pH in anode compartment. Acidifying brine to pH<6 before feeding to membranes to increase life of anode coating, reduce formation of O ₂ , OCl ⁻ , ClO ₃ .

Table 0.1 Energy Efficiency Potential by Controlling Side Reactions in Cell

Frequency of Analysis

The frequency of analysis of various streams entering and leaving the cell room is given in Table 4.2.

Stream	Analysis	Frequency
Cell room feed and exit brine	gpl NaCl	2 hr.
Cell room feed brine	ppm Ca, Mg	4 hr.
Electrolyser feed and exit brine	рН	2 hr.
Cell room exit caustic	% NaOH	2 hr.
Electrolyser exit caustic	% NaOH	2 hr
Cell room chlorine gas	% O ₂ , H ₂	8 hr.
Electrolyser chlorine gas	% O ₂ , H ₂	Daily

 Table 4.2 Recommended Analysis Frequencies

Source: AMAI, Delhi

Reducing Voltage Drop in Cells

The Table 4.3 shows various components of cell voltage and possible solutions.

Components	Factors for	Design	Operation & Maintenance			
of Cell	Improvement	Consideration	Measures			
Voltage						
Membrane IR	Mechanical	High performance	Regular replacement of membrane at			
drop	strength and	membrane like	the recommended period (3-5 years)			
	resistance	improved	to maintain the designed voltage			
		mechanical	drop. Every year due to membrane			
		strength, reduced	aging effect power consumption			
		resistance etc.	increases by 35 kWh/MT of caustic			
			production			
Cathode and	Cathodic and	Research on	Recoating of anode and cathode at			
anode over	anodic coating,	different alloys of	the recommended period (8 years) to			
potential	feed water quality,	coating, catalytic	maintain the designed voltage drop.			
	brine purity	cathode				
Electrolyte IR	Brine purity, gap	Reducing the gap	Maintaining low impurities level in			
drop	between anode	between anode	the brine system. Stringent brine			
	and cathode, brine	and cathode	quality check, Automatic control the			
	feed temperature		feed brine temperature			

Table 4.3 Energy Losses in Cell House and Possible Solutions

Reducing Energy Consumption by Operating at Lower Current Density through Addition of Cell Elements

The energy consumption in electrolysis varies linearly with the cell operating current density. The energy consumption can be reduced by operating the cells at lower current density. This can be achieved by increasing the number of cell elements and operating the cell elements at lower current density without sacrificing the level of production. The cost incurred on adding the cell elements can be recovered by way of decrease in energy consumption while maintaining the same level of production. The payback period varies from 3 to 4 years.

Reducing Membrane Voltage Drop

The energy consumption on account of voltage drop across the membranes can be controlled by regularly monitoring the condition of membranes for energy performance and replacing them when limit prescribed by the supplier is exceeded.

Apart from the replacement of membranes, the anode and cathode pans are required to recoated and repaired as and when their condition deteriorates. This will keep cell voltage within the prescribed level and prevent damage and premature failure of the membranes. The purity of aqueous sodium chloride fed into the cell elements for electrolysis should be maintained by removing calcium and magnesium impurities before being fed into the cell. The presence of calcium and magnesium impurities reduces the current efficiency of the membranes and causes accelerated ageing. The recommended limit for calcium and magnesium impurities is 20 ppb.

Structural and Contact Voltage Drop

The records of structural and contract voltage drops at the commissioning stage of the plant should be maintained as a benchmark for periodic monitoring and control.

Electrolyte Concentration

The cell voltage varies with electrolyte concentration—.increase is approximately of 20 mV per percent increase in NaOH concentration.

Electrolyte Temperature

The electrolysis should be carried out at optimum temperature to minimize energy consumption. The cell voltage varies with electrolyte temperature. Cell voltage decreases by 5 to 10 mV per degree increase in electrolyte temperature.

Energy Savings with Improved Membrane Technology

Over the years, there have been continuous improvements in membrane technology in terms of energy performance and GHG emission reduction in Tons of CO2 equivalent per T of NaOH Production. The Table 4,4 summarizes the development and commercialization of different technologies to reduce the energy consumption through voltage drop reduction in different areas.

Technologies	Mono- polar zero gap	2nd generation Bi-polar	3rd generation Bi-polar	4th generation Bi-polar	5th generation Bi-polar	6 th generation Bi-polar zero gap	Oxygen Depletion Cathode (ODC)
Mono-polar	0.07	0.14	0.35	0.39	0.45	0.49	0.93
Mono-polar zero gap	Х	0.06	0.28	0.32	0.37	0.42	0.85
2nd generation Bi-polar	Х	Х	0.21	0.25	0.31	0.35	0.79
3rd generation Bi-polar	Х	Х	Х	0.04	0.09	0.14	0.58
4th generation Bi-polar	Х	Х	Х	Х	0.06	0.10	0.54
5th generation Bi-polar	Х	Х	Х	Х	Х	0.05	0.48
6 th generation Bi-polar zero gap	Х	Х	Х	Х	Х	Х	0.44

Table 4.4 GHG Emission Reduction for Various Combinationsof Technology Conversions

Rectifiers

The rectifiers convert AC to DC and supply DC for the process of electrolysis. Therefore, they occupy a significant role as regards continuity, reliability and energy efficiency of the operation.

The efficiency of rectifiers may be defined as the ratio of DC power output at rectifier terminals to the AC power input at rectifier transformer terminals. The efficiency of rectifiers may vary from a low 94% to a high 97% or more. Since the volume of power handled by the rectifiers in chlor-alkali plants is large, even 1% change in efficiency results in significant energy losses/savings.

The rectifier efficiency depends upon the designed DC output voltage. The present trend is to deploy rectifier units with higher DC output voltage. The operating efficiency of the rectifier units also depends upon their loading. The low loading of the rectifiers reduces poor power factor and increases harmonic distortion. The I²R losses increases which lead to poor energy efficiency.

The present trend is to replace conventional rectifiers with high DC output voltage diode based rectifiers or thyristor based rectifiers.

Installation of Harmonic Filter Banks/Power Factor improvement Capacitors

The rectifier loads constitutes more than 80% of the total plant load. Being non-linear load, they are major source of harmonics generation. The power factor of rectifier can be low as 0.85 depending upon the loading of rectifier transformers. The reduced power factor results in higher line distribution losses, poor voltage regulation and increased KVA loading of transformers and generators.

However, the losses generated due to harmonics can be reduced by carrying out the study of harmonics present in an electrical system and installing suitably designed harmonic filter banks. The harmonic filter banks apart from mitigating the harmful effects of harmonics are also used for power factor improvement. The benefits of installing the harmonic filter banks/power factor improvement capacitors are as follows:

- The line/distribution losses (I^2R losses) are reduced.
- The harmful effects arising from harmonics in the system are reduced.
- The voltage regulation at the load end is improved.
- The KVA loadings of the transformers, generators and cables etc are reduced, creating scope for further useful loading (KW loading) of the transformers, generators and cables.

Some electric supply companies offer monetary incentives to consumers for improvement in power factor. The payback period on installation of capacitors for power factor improvement can be as low as 6 months.

They also mandate Total Harmonic Distortion (THD) to be maintained below a specified limit and levy penalties in case of THD value exceeding the limit.

4.2 CHLORINE LIQUEFACTION AND TAIL GAS TREATMENT

Chillers/Liquefaction Units

- Efficiency of refrigeration increases as temperatures of the liquid before flashing becomes lower. The process is carried out by sub-cooling using the plant cooling water. If sub-cooling is inadequate with the available cooling water, use of economizers will help to evaporate and cool the remaining liquid.
- Multi staging provides marginal energy savings as well as improves safety as compressed gas temperature is reduced.
- The refrigerants with higher boiling points are recommended. The lower boiling refrigerants require more energy for refrigeration—they require higher compression pressures for condensation by cooling water.
- Operation of steam-based vapour absorption machine (VAM) in place of vapor compression chillers for energy savings if feasible.
- Application of VFDs in refrigeration compressors operating on variable loads.

Scrubber (Tail Gas Handling)

The various factors influencing scrubber performance are as follows:

- Inlet Cl₂ concentration
- Inlet air flow rate
- Recirculation rate
- Packing height
- Capacity of the scrubbing liquor for absorption of chlorine

About 1-8% of Cl_2 produced ends up as tail gas. The chlorine absorption unit is sized based on the gas flow and not on chlorine production capacity of the plant. The gas flow is based on the flow of inert gas injected to keep the hydrogen concentration below the explosivity limits. The majority of the plants work with gas flows in the range 2000–8000 m³/h.

The commonly used scrubber is spray type scrubber which is simple in design and costeffective. Pressure drop is low and consequently power consumption is only 0.5-2 HP/1000 CFM. The operating efficiency is about 90% for a particle size of $+8\mu$ m.

4.3 HYDROGEN GAS MANAGEMENT

Thermal Energy Conservation by using Hydrogen as Fuel in Boiler

The existing oil-fired burner can be modified to handle hydrogen as a fuel. In most plants about 15% of hydrogen is used as fuel along with furnace oil. Combustion of one kg of hydrogen releases 28922 kcal/kg of heat.

No.	Parameters	Units		Value	Basis
1	Hydrogen generation factor	Kg H ₂ /Ton NaOH	=	25	
2	Average H_2 used as fuel for	%	=	15	
	process heating of total H_2				
	generated				
3	Average H ₂ used as fuel of total H ₂	kg H_2 /Ton of	=	3.75	
	generated	NaOH			
4	Combustion Calorific value of H ₂	Kcal/ kg of H ₂	=	28922	
6	Annual H ₂ production for 250 TPD	$H_2 \text{ kg}/\text{yr.}$	=	$20x \ 10^5$	25x250x320
	(considering 320 working days)				
7	Hydrogen used as fuel	kg H ₂ /yr.	=	225000	$20 \times 10^5 \times 0.15 \times 10^{10}$
					0.75
8	Heat availability (assuming 80%	kCal/yr.	=	52059 x	(225000 x 231377
	combustion efficiency)			10^{6}	x.08)
9	Annual FO usage if H ₂ is not used	Kl /yr.		859	(1.65x 52059 x
	(considering 10,000 kcal/l and				$10^{6})/(10000 \times 1000)$
	combustion efficiency of 65%				
10	Annual GHG reduction for a	T CO ₂ /yr.		2783	(859 x 3.24)
	typical 250 TPD plant (1 kl				
	furnace oil = 3.24 t CO_2)				

Table 4.4 GHG Emission Reduction with Hydrogen as Fuel in Boiler

Electrical Energy Conservation by Using Hydrogen as Fuel in Fuel Cells

Average reported flaring of H_2 —which is a waste of energy—is about 14%. This energy can be potentially recovered by deploying fuel cells. Based on this equivalent power generation and reduction in GHG emissions by recovering energy from vented hydrogen for a typical 250 TPD plant is assessed and presented in Table 4.5.

S. No	Parameters	Units		Value	Rationale
1	Hydrogen generation factor	Kg H ₂ /Ton NaOH	=	25	
2	Average H ₂ vented of total H ₂ generated	%	=	14	
3	Average H ₂ vented of total H ₂ generated	kg H ₂ vented /Ton of NaOH	=	3.5	0.14 x 25
4	Specific hydrogen consumption in PEM fuel cell	Kg H ₂ /kWh	=	0.06	At 50% conversion efficiency in Proton Exchange Membrane fuel cell.
5	Specific energy generation from PEM fuel cell using hydrogen	kWh/Kg H ₂	=	16.67	1/0.06
6	Annual H ₂ production for 250 TPD (considering 320 working days)	H ₂ kg /year	=	20x 10 ⁵	25x250x320
8	Hydrogen available for Fuel Cells (75% of 14% vented)	kg H ₂ /year	=	210000	20 x 10 ⁵ x 0.14 x 0.75
9	Potential captive electricity generation using Hydrogen PEM fuel cells.	kWh/yr.	=	3.5 x 10 ⁶	(16.67 x 210000)
10	Annual GHG reduction for a typical 250 TPD plant (1 kWh = 0.91 kg CO ₂)	T CO ₂ /yr.		3185.6	3.5 x 10 ⁶ x 0.91
11	Savings from energy generated H ₂ (@Rs 5/kWh)	Crore Rs/yr.	=	1.75	$(120.82 \times 10^6 \times 6.5)/10^7$

Table 4.5 Captive PEM Fuel cell based Power Generation

4.3.1 CAUSTIC CONCENTRATION

Energy efficiency techniques include the following:

- Flashing of condensate to produce steam for use in later effect operating at low pressure
- Increasing number of effects in evaporator—multiple effect evaporator— to reduce steam consumption.
- Reducing losses in process and steam condensate.

For a multiple effect evaporator steam consumption varies from 0.5-0.25 kg steam/ kg water evaporated depending on the number of effects. The measured steam consumption

less than design indicate scope for improvement. The following factors affect evaporator performance:

- Scaling
- Improper vacuum supply
- Required steam pressure
- condensate evacuation issues
- Tube corrosion leading to puncture
- Performance of heat exchanger before evaporator (If applicable)

These issues can be addressed by choosing the right type of evaporator and adopting best operation and maintenance practices as follows:

Selecting an Evaporator

Whenever the evaporation rate is above 1,350 kg/h, multi-effect evaporation should be considered. In a double effect evaporator, evaporation is approximately 2 kg of water from the product for each kg of steam supply. In chlor-alkali industries, 3-stage falling film evaporator is preferred.

Using retrofits life TVR and MVR

Thermo Vapour Recompression (TVR)

When steam is available at pressures in excess of 3 bar(g) and preferably over 7 bar(g), thermo vapour recompression can be adopted. In this operation, a portion of the steam evaporated from the product is recompressed by a steam jet venturi and returned to the steam chest of the evaporator. Steam efficiency depends on the steam pressure and the number of effects over which TVR is applied. TVR can be used along with multi-effect to provide even larger steam efficiencies.

Mechanical Vapour Recompression (MVR)

This process takes the vapour that has been evaporated from the product, compresses the vapour mechanically and then uses the higher pressure vapour in the steam chest. The energy supplied to the compressor is drawn from an electrical motor/ steam turbine/gas turbine/internal combustion engine.

4.4 STEAM GENERATION AND DISTRIBUTION

Typical losses reported in steam generation and distribution is presented in Table 4.9.

Heat Loss Areas	%
Steam Generation Losses	
Heat Loss in flue gas	15
Radiation and Convection Heat Loss	3
Boiler Blow-down	2
Steam Distribution losses	
Insulation (Steam and condensate)	6.4
Steam trap station failure	3.6
Condensate losses	3.8
Total	38.8

The various energy efficiency opportunities are as follows:

Recovery of Seam and Process Condensate

As against potential condensate recovery of about 90%, average recovery observed in industries is in the range 70-80% indicating saving potential of 0.6% of thermal energy.

Reducing Boiler Blowdown

By managing and treating boiler feed and condensate water to desired quality, blow-down losses can be maintained at 2%.

Effective Insulation of Boiler and Steam Distribution System

Through effective insulation, radiation and convection losses can be minimised to 3% in boiler and 6.4% in steam distribution.

Selection, Periodic Monitoring and Repair of Steam Traps

Suitable steam traps shall be selected and maintained for removal of condensate.

By adopting the best practices summarized above, the losses in steam generation and distribution can be brought down to 39% to 30%. Considering steam generation and distribution constitutes 6% of total energy used in the sector, a 10% reduction in thermal energy consumption amounts to 0.6% of total energy saved.

Other Energy Efficiency Opportunities include the following

- Avoiding steam leaks
- Utilising steam at the lowest acceptable pressure

- Increasing number of effects in multiple effect evaporator (95%)
- Using thermo-compressor to reuse low pressure steam

4.5 ENERGY EFFICIENCY IN PUMPING SYSTEM

Typical energy efficiency measures in pumping system include avoiding throttling for flow control, adopting multiple pump arrangement, and applying variable frequency drives for variable flows, replacing pump or motor or both and periodic preventive maintenance.

Avoiding Throttling Operation

This is the common method of controlling the flow from a pump. Throttle valves control flow by

- By increasing the upstream backpressure
- By increasing the backpressure on a pump

Multiple-pump arrangement

Multiple pumps operation comprises several smaller pumps in combination (series or parallel). It is adopted when a single pump is unable to operate close to its best efficiency because of wide variation in flow requirements.

The advantages in using combinations of smaller pumps rather than a single large pump are:

- Operating flexibility
- Redundancy in case of a pump failure
- Lower maintenance requirements due to pumps operating near their BEP
- Higher efficiency.

Variable frequency drives (VFD)

They are the preferred option when pumps operate for at least 2000 hours per year and process flow rate requirements vary by 30% or more over time. VFD eliminates the need for throttling valves and motor starters. VFD saves energy by varying the pump rotational speed as power is proportional to the cube of motor speed.

Motor Replacement

Right motor ratings, efficiency and motor loading influence energy consumption. Oversized as well as undersized motors, result with increased energy losses. Ideally motors should operate at 75-100% load. When motors are operated under lightly loaded conditions, power factor is reduced.

Some commonly encountered problems and measures to improve energy efficiency that can be used to address them are summarised in Table 4.10.

S. No	Common Problem	Potential Measures to Improve Efficiency				
1	Unnecessary water demand	Reduce water demand on system through flow				
	on pumping system	and water balance studies				
2	Pump throttling	Adopt variable speed drive				
3	Oversized pump	 Select pump that operates near to Best Efficiency Point (BEP) Change impeller Trim impeller 				
4	Inefficient piping configuration	Reconfigure during maintenance.				
5	Oversized/ inefficient motor	Adopt energy efficient motor				

 Table 4.10 Common Problems in Pump and Measures to Improve Energy Efficiency

Potential savings with energy efficiency measures are given in Table 4.11.

S. No	Energy Savings opportunities	Potential Savings
1	Replace throttling valve with speed control	10%
2	Install parallel pumping system for highly variable loads	10%
3	Replace motor with energy-efficient motor	1–3%
4	Replace old pump with a more efficient pump	10–20%

Table 4.11 Potential Savings with Energy Efficiency Measures

4.6 ENERGY EFFICIENCY IN TRANSFORMERS AND RECTIFIERS

Following are the best practices followed in the plant to conserve energy in transformer and rectiformer.

Optimization of Loading of Transformer

- By locating transformer close to the load center, considering other features like centralized control, operational flexibility etc, will bring down the distribution loss in cables.
- Under fluctuating loads, transformers should be used in parallel so that load is shared and transformers operate close to the maximum efficiency range.

Replacing existing Transformer with Energy Efficient Transformers

- By using energy efficient transformers, efficiency improves from 95–97%.
- By using amorphous transformers efficiency improves to 97–98.5%.

Energy Conservation Measures in Rectiformer

Energy loss in AC to DC conversion ranges from 5- 10%. Design rectifier efficiencies range from 91-94% (old diode type) to 97-98% (thyristor type), while the operational efficiencies are typically 0.5 to 1.0 % less than design. The options are:

- Apart from clean contacts, cooling, ventilation, actual loading on the rectifier system influences efficiency.
- Replacement of older thyristor controlled rectifiers with more efficient diode rectiformers increases the rectiformer efficiency to about 4-6% and saves about 5% of the total connected load. For a 250 TPD plant annual energy reduction is 930400 kWh and GHG reduction of 8466 Tons of CO₂ equivalent.

4.7 ENERGY EFFICIENCY IN LIGHTING SYSTEM

The various energy efficiency options in lighting system include the following:

- Use separate transformer for lighting to have better control over voltage.
- Replace HPMV & MH lights with LED lights
- Adopt lighting controls to eliminate unnecessary lighting
- Install lighting occupancy sensors
- Use day lighting.

5. CASE STUDIES

5.1 RE-COATING OF ANODE AND CATHODE WITH MEMBRANE CHANGE

Case Study-1: Re-coating of anode and cathode with membrane change				
Description	Value	Remarks		
Energy saving due to recoating of anode and	20	Cell voltage increases by		
cathode (kWh/T of caustic)		31 mv per year =20 kW/T		
		NaOH i.e; (31/1000 x 670)		
Energy Saving due to membrane change (kWh/T	35	Increase in power		
of caustic)		consumption by 35 kWh/T		
Cost saving (Rs/T of caustic)(5 x (20+35))	275	@ Rs 5 /kWh		
Cost saving/ annum for 250 TPD plant operating	1,92,50,000			
for 280 days				
Investment required for recoating for 250 TPD	12,50,00,000			
caustic plant				
Simple Pay-back period in Years	6.5			
(12,50,00,000/1,92,50,000)				
GHG reduction by recoating and membrane	50	GHG factor of 0.91Kg		
change (kg CO_{2e}/T of caustic)(20+35)*0.91		CO ₂ /kWh		
Annual GHG saving (kg CO _{2e})	35,00,000	280 days basis @ 250 TPD		
		caustic		

Courtesy: The Andhra Sugars Ltd

5.2 FULLY AUTOMATIC CONTROL OF BRINE FEED TEMPERATURE

Case Study-2: Replacement of semi-automatic control of brine feed temperature with fully					
automatic system					
Description	Value	Remarks			
Energy saving due to control of brine feed	14.5	$1.3595T^2 - 227.86T + 11670$			
temperature within the range of 1 degree					
Centigrade $(90 - 89)(kWh/T \text{ of caustic})$					
$(1.3595 * 90^2 - 227.86 * 90 + 11670) - (1.3595 * 89^2 - 227.86 * 89 + 11670) = 14.5$					
Cost saving (Rs/T of caustic) (5 x (14.5))	72.5	@ Rs 5 /kWh			
Cost saving/annum for 250 TPD plant operating	5075000				
for 280 days					
Investment	1000000	Rs 1 crore investment for 250			
		TPD plant			
Simple Pay-back period in Years	1.97 years				
1000000/5075000					

GHG reduction by recoating and membrane	13.2	GHG	factor	of	0.	91Kg
change (kg CO_{2e} / T of caustic)(14.5)*0.91		CO ₂ /kW	/h			
Annual GHG saving (kg CO _{2e})	924000	280 da	ys basis	@	250	TPD
		caustic				

Courtesy: The Andhra Sugars Ltd

5.3 PREHEATING OF FEED BRINE USING CHLORINE IN RECUPERATOR

Case Study-3: Pre heating of feed brine from 60°C to 68°C using chlorine gas coming out of				
electrolyser at 80°C in recuperator				
Description	Value	Remarks		
Steam required to heat brine from 60-90°C (kg of steam / T of caustic)	397	36300 MT of steam requirement for brine heating from 60-90°C for 250 TPD		
Steam required to heat brine from 68-90°C (kg of steam / T of caustic)	145	23100 MT of steam requirement for brine heating from 68-90°C for 250 TPD		
Cost of steam saving by pre heating of feed brine from 60°C to 68°C using chlorine gas coming out of electrolyser at 80°C using recuperator saving (Rs./T of caustic) (397-145)/1000 * 2002 Savings in Rs /vr operating 280 days/vr	184.2	@ Rs 2002 / MT of Steam		
Investment Rs.	1,20,00,000			
Simple Pay-back period in Years (Rs. 1.29 cr /Rs. 1.2 cr)	0.93			
GHG reduction by preheating brine (kg CO _{2e} / T of caustic) (397-145)*(660/860)*0.91	176.6	GHG factor of 0.91 Kg CO ₂ /kWh, Steam caloric value 660kcal/kg		
Annual GHG saving (kg CO _{2e})	12362000	280 days basis @ 250 TPD caustic		

Courtesy: The Travancore – Cochin Chemicals (TCC) Ltd

5.4 CONVERSION OF CAUSTIC CONCENTRATION PLANT FROM DOUBLE EFFECT TO TRIPLE EFFECT

Case Study-4: Conversion of caustic concentration plant from double effect to triple effect.				
Description	Value	Remarks		
Steam requirement in MT for double effect	1	1MT of steam / MT of		
evaporator for 1MT of caustic concentrated		caustic concentrated		
Steam requirement in MT for triple effect	0.55			
evaporator for 1 MT of caustic concentrated				
Annual cost saving of steam (Rs./T of caustic)	97200	@ Rs 600 / MT of Steam		
(1-0.55) * 600*360				
Savings in Rs./yr operating 360 days/yr				
Cost saving/ annum for 250 TPD plant operating	243 lakhs			
(97200*250)				
Investment required for 250 TPD caustic plant	300 lakhs			
Simple Pay-back period in Years	1.23			
(300/243)				
GHG reduction (kg CO ₂ e/ T of caustic)	314	GHG factor of 0.91 Kg		
(1-0.55)*1000*(660/860)*0.91		CO ₂ /kWh,		
		Steam calorific value		
		660kcal/kg		
Annual GHG saving (kg CO _{2e}) (0.314*250*360)	282.8 lakhs			
for 250 TPD caustic				

Courtesy: M/s. Sree Rayalaseema Alkalies and Allied Chemicals Ltd.

5.5 REPLACING RECIPROCATING COMPRESSOR WITH FREON SCREW COMPRESSOR FOR CHLORINE LIQUEFACTION

Case Study-5: Conversion of reciprocating compressor with Freon screw compressors for					
chlorine liquefaction					
Description	Value	Remarks			
The power reduction for the conversion of	12 kWh / MT				
reciprocating compressor with Freon Screw	of chlorine				
For 250 TPD caustic production the expected	222 MT				
chlorine					
The Annual power reduction for the conversion of	7.45 lakhs				
reciprocating compressor with Freon Screw for					
250 TPD Caustic (222x12x280 days)					
Annual cost saving in lakhs (7.45 lakhs x 5)	37.25	@ Rs 5 /kWh			
Investment on Freon compressor	120 lakhs				
Simple Pay-back period in Years	3.2				

(120/37.25)		
Annual GHG saving (kg CO _{2e}) (7.45 lakhs*0.91)	6.8 lakhs	GHG factor of 0.91 Kg
for 250 TPD caustic		CO ₂ /kWh,

Courtesy: M/s. Sree Rayalaseema Alkalies and Allied Chemicals Ltd.

5.6 CONVERSION OF HOT WATER FIRED SINGLE EFEECT VAM MACHINE WITH DOUBLE EFFECT VAM MACHINE

Case Study-6: Conversion of hot water fired single effect vapour absorption machine (VAM)					
machine with double effect VAM					
Description	Value	Remarks			
The steam consumption for single effect VAM	8.16 kg/TR				
The steam consumption for double effect VAM	3.88 kg/TR				
Annual cost saving of steam (Rs./TR) (8.16-3.88) * 280*600/1000	5319	@ Rs 600 / MT of Steam			
Savings in Rs./yr operating 280 days/yr					
For a 250 TPD caustic plant TR required	345				
Cost saving/ annum for 250 TPD plant operating (5319* 345)	18.35 lakhs				
Investment required for 345 TR	52 lakhs				
Simple Pay-back period in Years (52/18.35)	2.83				
GHG reduction (kg CO2e/ T of caustic)	4.13	GHG factor of 0.91 Kg			
(8.16-3.88)*(660/860)*0.91 *(345/250)		CO ₂ /kWh,			
		Steam caloric value 660kcal/kg			
Annual GHG saving (kg CO_{2e}) (4.13*250*280) for 250 TPD caustic	2.9 lakhs				

Courtesy: M/s. Sree Rayalaseema Alkalies and Allied Chemicals Ltd.

5.7 IMPROVEMENT OF POWER FACTOR BY ADDING CAPACITOR

Case Study-7: Improvement of power factor from 0.96 to 0.99 by adding capacitor in the			
existing capacitor banks. The	he average loading of transformer is 16000 kVA		
Present kW load (KVA*PF)	= 16000 *0. 96 =15360		
kVAr required = kW [tan $\varphi 1$ – tan $\varphi 2$]	$=15360\{(\tan(\cos^{-1}PF_{1}) - \tan(\cos^{-1}PF_{2})\}$		
	$= 15360\{(\tan(\cos^{-1}0.96) - \tan(\cos^{-1}0.99))\}$		
	=15360*0.108		
	=1658.8 kVAr		
New kVA = (old PF/New PF)*old kVA	= (0.96/0.99) * 16000		
	=15515.2		

Annual cost savings in Rs due to reduction	= (16000 - 15515.2) * 12 * 150 = 8.72 lakhs
in kVA (@ Rs. 150 per kVA)= (old kVA –	
New kVA) * 12 * 150	
Cost of capacitor in Rs. taking Rs.1200/	=1658.8 * 1200
kVAr for 1658.8 kVAr	=19.9 lakhs
Payback period in yrs (19.7/8.72)	2.26

Courtesy: M/s. Sree Rayalaseema Alkalies and Allied Chemicals Ltd.

5.8 REPLACEMENT OF OLD LOW EFFICIENCY TRANSFORMER WITH NEW ENERGY EFFICICENT TRANSFORMER

Case Study-8: Replacement of old low efficiency transformer with new energy efficient transformer for 250 TPD plant					
Basis	250	TPD Caustic			
SEC	2500	kWh/ T NaOH lye			
Annual working days	320				
DC Energy consumption/ year	20000000	kWh/ year			
Rectiformer efficiency	97	%			
AC	206185567	kWh			
Power	26847.07904	kWh			
KVA @0.9 PF	29830.08782				
MVA assuming 10% factor of safety	32.8130966	Say 35 MVA			
	Unit	Old transformer	Energy efficient transformer		
Loading		75%	75%		
Efficiency		97	99		
Transformer rating	MVA	20	20		
Rated no-load loss	kW	18	15		
Rated load loss	kW	107	100		
Total loss	kW	78.1875	71.25		
Annual Operation	Hrs.	8000	8000		
Annual Energy Loss	kWh	625500	570000		
Annual Energy Saving	kWh		55500		
Total annual saving in Rs @ Rs 5/kwh	Lakhs		3		
CO ₂ emission @ 0.91 kg/kWh	ton/annum		51		
Purchase price difference	lakhs		10		

Payback period	Yrs.	3.6
GHG emission reduction	Ton/annum	89.30
for 250 TPD of 35 MVA		
transformer (51/20)*35		

Courtesy: The Travancore – Cochin Chemicals (TCC) Ltd

5.9 REPLACEMENT OF CONVENTIONAL MAGNETIC CHOKES WITH ELECTRONIC CHOKES

Case Study-9: Replacement of conventional magnetic chokes with energy saving electronic chokes (1500 nos.) for electrical energy savings and reduction of failure of tube rods. Electrical energy saved in kWh by replacing with =1500 * 56.5 = 0.85 lakhs electronic choke (saving is 56.5 kWh/choke/year @ 4200 burning hours) GHG emission reduction (0.85 *0.91) in Tons of 77.350 CO2 eq./annum Electrical energy saved @ Rs. 5 / kWh =0.85 * 5 = Rs 4.25 lakhs Investment @ Rs. 200/electronic choke =200*1500=3 lakhs Pay back period in Yrs. (3/4.25) 0.7

Courtesy: The Travancore – Cochin Chemicals (TCC) Ltd

6. INTERNET OF THINGS (IOT)

6.1 OVERVIEW

As the world's expendable energy resources deplete and the industrial sector is being asked to deliver more to a growing population, energy efficiency has taken center stage to ensure the longevity of these energy resources, and the Internet of Things can play a crucial role. The emergence of the Internet of Things (IoT) almost certainly is the most important single development in the long evolution of energy management. The insight derived from data collected from new Internet-connected devices can be used to develop new services, enhance productivity and efficiency, improve real-time decision making, solve critical problems, and create new and innovative experiences.

Traditionally, many plants do not have the technology in place to track and measure energy use. On top of that, information on a plant's energy production and consumption is not consolidated into a single place. Energy production and consumption data is often not visible in real time and is not presented at a level granular enough to reflect how changes in behaviour affect energy use. With limited information at their disposal, energy managers can have a difficult time finding the places where energy use could improve. To develop a clear energy-saving strategy and drive energy-saving behaviour, managers need to boost monitoring capabilities and this data needs to be coordinated into a single system.

The Internet of Things (IoT) captures information seamlessly from the sensors and machines that monitor all aspects of the manufacturing process. The information it returns offer greater visibility into actionable data that can result in significant energy savings. Network sensors track energy performance, monitor for leaks and flag any subpar operating situations. Adding Internet of Things sensor technology to a plant allows for real-time alerts that notify energy managers about wasteful situations. Energy managers can then take timely action before their operation loses large amounts of money. Further, the Internet of Things gets the right information to the right expert– whether that person is an onsite manager, an off-site facility specialist, or a third party expert—when they need it, so they can make the best decisions to improve energy performance.

6.2 APPLICATIONS OF IOT IN CHLOR-ALKALI PLANTS

Few applications of IOT are presented as follows:
Chlorine Electro-Chemical Process Optimization

A process optimizer balances the current efficiency across cells to optimize performance and to identify and diagnose faults. The software can be operated with any DCS platform. Data is interpreted and performance variability in oxygen, hydrogen and chlorine is determined. It improves cell performance, product quality, membrane life and production.

Rectifier Control

Application specific control features include:

- Constant current control
- Power factor regulation
- Ampere-hours regulation
- Active compensation of DC current over swing due to tap changing
- Trending

PVC Reaction Process Optimisation

PVC is one of the product manufactured using chlorine generated from cell house. Operating and controlling PVC reactors is a key area for better product quality, productivity and cost reduction.

Off-line tool has model calibrated with historical data and enables "what if" scenarios to be carried out for maximizing output, minimizing cost and improving product quality.

On-line tool can be used to support batch optimization and characterization. The model supports on-line real-time parameterization to predict, control and optimize such items as initiator charge and reactor temperature profile. As a result, reaction times are optimized; plant throughput increases and coarse out-of-specification batches are detected earlier.

Predictive Asset Management

Predictive asset management tool determine the operating conditions of manufacturing assets without the use of dedicated asset monitoring equipment. Using existing sensor data and known fault conditions, predictive asset management tools determine the operating conditions of manufacturing assets without the use of dedicated asset monitoring equipment. This approach is particularly beneficial in areas of the plant where operating conditions make it difficult to take specific measurements. It will reduce planned and unplanned maintenance costs.

6.3 APPS FOR PRODUCTIVITY ASSESSMENT AND IMPROVEMENT

This section lists various Apps available free of cost online which can be installed in smart phones and used on daily basis for

- 1. Process improvement
- 2. Resource optimisation
- 3. Troubleshooting

Few apps are listed below for reference.

S. No.	App Logo	Description
1	Plutocalc Water Daniel BP ***** Free Get	Plutocalc is problem solver suite for water treatemnt, wastewater, hydraulics, environmental chemistry and unit conversions.
2	AWT Calculations Association of Water Technologies Tools I	The Association of Water Technologies (AWT) calculations app allows water treaters to do basic water treatment calculations on their mobile device. The app allows you to determine your boiler system conditions, conduct a cooling tower survey, calculate dealkalizer capacity and determine energy savings.
3	Heat Exchanger Calculator Free Palas Tools *****3 * * Add to Weblite	The Heat Exchanger calculator is based on Effectiveness – NTU method.
4	Heat Loss Insulated Pipe Free Palas Tools ®	User can calculate heat loss and outside surface temperature of an insulated pipe and a bare pipe to surroundings.
5	Air Compressor Calculations Tamaan Compressors Business ***** 16 ± Add to Witchildt	Helps user to calculate some basic technical values about air compressors.
6	InstallAIR Attas Copeo AB Business INSTALLAIR Add to Wishist Install	It is for persons who need to install a compressor. Includes calculations for: • Buffer capacity • Pipe diameter • Pressure drop

S. No.	App Logo	Description
		Cooling air required
		Unit conversion
		Leakage calculations
		Condesate formed
7	Gas Compressor	It helps to calculate gas compressor requirements
	At Work Rio Solutions Ltda Business *****2 1	such as actual flow, head and power. Produces
	Offers in-app purchases	output reports.
8		It is ideal steam application tool. Calculations
	SteamHUB Forbes Marshall Education ***** 352 ±	involved from steam generation to condensate
		loop. Equipped with steam tables and unit
	SteamHUB	conversions.
	Add to Wishlist Install	
9	Steam Tools Mobile App	Gives access to steam table and saturated steam
	Spirax Sarco Business ***** 253 ±	pipe sizing tool without internet.
	IS	
	Add to Wishlist	
10		Allows check efficiency of pumps and other
	INSE GOTION/2C1 INSE AG INSE AG	rotating equipment.
	KSB 📞	
11		Can be used for design and selection of
11	Pump Calcs	centrifugal numps positive displacement numps
	SFA Software LLC Education ######13 1	electric motors, machinery components.
	Offers in-app purchases	
	Add to Wishlist install	
12	Field Process Calculator Free	App provides calculation for volume, surface
	R Tech Productivity ***** 120 ±	area, flash steam calculation, pump shaft power,
		pipe flow calculation, cooling tower process
	Add to wishlist Install	calculation, etc.
13		User can get lighting design for commercial and
	Bajaj Lighting App Bajaj Electricals Lid Business ***** 26 ±	industrial lighting. User can create own lighting
	E E	solutions through app.
	diya	
14	Respirator Protection Resource	This app is intended for use as a quick reference
	3M Company Productivity ***** 65 2	guide for identifying types of workplace
	5 W [°]	use when handling certain types of chemicals
	Safety	use when nanoning certain types of chemicals.

S. No.	App Logo	Description
15	Indian Red Cross First Aid Indian Red Cross Society Health & Fitness	This Indian Red Cross Society First Aid application provides you first aid guidelines to handle day-to-day emergencies.
	[2] Aud to Albin	latest international guidelines for first aid (2015-2016).

ABBREVIATIONS

AMAI	Alkali manufacturer association of India
BAT	Best available technology
BCM	Billion cubic meters
CD	Current density
CE	Current efficiency
CFL	Compact fluorescence light
CIL	Coal India Ltd
EPDM	Ethylene propylene dinene monomer
ETP	Effluent treatment plant
FEB	Fluorinated ethylene propylene
GHE	Greenhouse emissions
gpl	Gram per litre
HCL	Hydro chloric acid
LED	Light emitting diode
lpm	Liters per minute
Mn	Million
MT	Metric Ton
MTOE	Million tons of oil equivalent
MW	Mega watts
NaClO	Sodium hypochlorite
NaClO ₃	Sodium chlorate
PEM	Polymer electrolyte membrane
PPb	Parts per billion
ppm	Parts per million
PTFE	Poly tetra fluro ethylene
RO	Reverse osmosis
SCCL	Singareni collieries company Ltd
Т	Tons
TPD	Tons per day
VFD	Variable frequency drive

BIBLIOGRAPHY

- 1. Industry Reports of Alkali Manufacturers Association of India
- 2. Chlorine Safety World Chlorine Council
- 3. XIIth five year plan Report on Indian chemical industry
- 4. Handbook of Chlor-Alkali Technology Thomas F. O' Brien, Tilak V. Bommaraju and Fumio Hine
- 5. Degremont -Water Treatment Handbook
- 6. GE Water Treatment Handbook
- 7. Energy Audit data gathered from Andhra Sugars Ltd., Travancore Chemicals, TPL, DCW Sahupuram and other industries.
- 8. Water manual by CII, 2011
- Best Available Techniques (BAT) Reference Document for the Production of Chlor-alkali by European Commission, Industrial Emissions Directive 2010/75/EU, 2014
- Handbook of Chlor-Alkali Technology Thomas F. O' Brien, Tilak V. Bommaraju and Fumio Hine
- 11. Handbook of Public Water Systems, Second edition, 2001, HDR Engineering Inc.
- 12. Energy Audit data gathered from Andhra Sugars Ltd., Travancore Chemicals, TPL, DCW Sahupuram and other industries.
- Best Available Techniques (BAT) Reference Document for the Production of Chlor-alkali by European Commission, Industrial Emissions Directive 2010/75/EU, 2014
- 14. Handbook of Chlor-Alkali Technology Thomas F. O' Brien, Tilak V. Bommaraju and Fumio Hine
- 15. Energy Audit data gathered from Andhra Sugars Ltd., Travancore Chemicals, TPL, DCW Sahupuram and other industries.
- 16. Thyseen Krup Tech forum article Issue 1, 2013, published by ThyssenKrupp AG, Germany
- Sustainable engineering & technology developments for energy conservation: Chlor- alkali Industry by S. K. Dodiya and Dr. R. L. Yadav, Chemical Industry Digest. June 2015.
- 18. Report on Setting up standards and Norms for Energy Usage in Chlor-alkali Sector prepared by National Productivity Council, Chennai
- 19. Perry's Handbook on Chemical Engineering, 8th Edition.
- 20. Guide book for National Certificate exam for energy managers and Energy auditors by Bureau of Energy Efficiency
- 21. www.swagelokenergy.com
- 22. Best Practice Guide: Steam, Hot Water & Process Heating: Obrieni
- 23. Guide book for National Certificate exam for energy managers and Energy auditors by Bureau of Energy Efficiency